Skip to main content

Drug Resistance

  • Chapter
  • First Online:
A Systems Biology Approach to Blood

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 844))

Abstract

Drug resistance is a fundamental problem in the treatment of cancer since cancer that becomes resistant to the available drugs may leave the patient with no therapeutic alternatives. In this chapter, we consider the dynamics of drug resistance in blood cancer and the related issue of the dynamics of cancer stem cells. After describing the main types of chemotherapeutic agents available for cancer treatment, we review the different mechanisms of drug resistance development. Various mathematical models of drug resistance found in the literature are then reviewed. Given the well-known hierarchy of the hematopoietic system, it is critical to focus on those cells that have the ability to self-renew, since these will be the only cells able to induce long-term drug resistance. Thus, a recent mathematical model taking into account the complex dynamics of the leukemic stem-like cells is described. The chapter closes with a few applications of this model to chronic myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perry MC. The chemotherapy source book. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  2. Goldie JH, Coldman AJ. Drug resistance in cancer: mechanisms and models. Cambridge: Cambridge University Press; 1998.

    Book  Google Scholar 

  3. Takimoto CH, Calvo E. Principles of oncologic pharmacotherapy. In: Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ, editors. Cancer management: a multidisciplinary approach. UBM Medica; 2008.

    Google Scholar 

  4. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  PubMed  Google Scholar 

  5. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 2000;289:1938–42.

    Article  CAS  PubMed  Google Scholar 

  6. Varmus H. The new era in cancer research. Science. 2006;312:1162–5.

    Article  CAS  PubMed  Google Scholar 

  7. McCormick F. New-age drug meets resistance. Nature. 2001;412:281–2.

    Article  CAS  PubMed  Google Scholar 

  8. Teicher BA. Cancer drug resistance. Totowa: Humana Press; 2006.

    Book  Google Scholar 

  9. Daniel G. Targeted therapies: mechanisms of resistance. New York: Springer; 2011.

    Google Scholar 

  10. Frei E, Teicher BA, Holden SA, Cathcart KN, Wang YY. Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Res. 1988;48:6417–23.

    CAS  PubMed  Google Scholar 

  11. Griswold DP, Trader MW, Frei E III, Peters WP, Wolpert MK, Laster WR. Response of drug-sensitive and -resistant L1210 leukemias to high-dose chemotherapy. Cancer Res. 1987;47:2323–7.

    CAS  PubMed  Google Scholar 

  12. Schimke RT. Gene amplification, drug resistance, and cancer. Cancer Res. 1984;44:1735–42.

    CAS  PubMed  Google Scholar 

  13. Schimke RT. Gene amplification in cultured cells. J Biol Chem. 1988;263:5989–92.

    CAS  PubMed  Google Scholar 

  14. Souhami RL, Gregory WM, Birkhead BG. Mathematical models in high-dose chemotherapy. Antibiot Chemother. 1988;41:21–8.

    CAS  PubMed  Google Scholar 

  15. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  CAS  PubMed  Google Scholar 

  16. Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics. 1943;28:491–511.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Skipper HE, Schabel FM, Lloyd H, editors. Dose-response and tumor cell repopulation rate in chemotherapeutic trials. New York: Marcel Dekker; 1979.

    Google Scholar 

  18. Zheng Q. Progress of a half century in the study of the Luria-Delbruck distribution. Math Biosci. 1999;162(1–2):1–32.

    Article  CAS  PubMed  Google Scholar 

  19. Coldman AJ, Goldie JH. Role of mathematical modeling in protocol formulation in cancer chemotherapy. Cancer Treat Rep. 1985;69:1041–8.

    CAS  PubMed  Google Scholar 

  20. Coldman AJ, Goldie JH. A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull Math Biol. 1986;48:279–92.

    Article  CAS  PubMed  Google Scholar 

  21. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979;63:1727–33.

    CAS  PubMed  Google Scholar 

  22. Goldie JH, Coldman AJ. Quantitative model for multiple levels of drug resistance in clinical tumors. Cancer Treat Rep. 1983;67:923–31.

    CAS  PubMed  Google Scholar 

  23. Goldie JH, Coldman AJ. A model for resistance of tumor cells to cancer chemotherapeutic agents. Math Biosci. 1983;65:291–307.

    Article  Google Scholar 

  24. Goldie JH, Coldman AJ, Gudauskas GA. Rationale for the use of alternating non-cross-resistant chemotherapy. Cancer Treat Rep. 1982;66:439–49.

    CAS  PubMed  Google Scholar 

  25. Komarova N. Stochastic modeling of drug resistance in cancer. J Theor Biol. 2006;239:351–66.

    Article  CAS  PubMed  Google Scholar 

  26. Komarova N, Katouli AA, Wodarz D. Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia. PLoS ONE. 2009;4:e4423.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci U S A. 2005;102:9714–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Komarova NL, Wodarz D. Effect of cellular quiescence on the success of targeted CML therapy. PLoS ONE. 2007;2:e990.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Iwasa Y, Nowak MA, Michor F. Evolution of resistance during clonal expansion. Genetics. 2006;172:2557–66.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Durrett R, Moseley S. Evolution of resistance and progression to disease during clonal expansion of cancer. Theor Popul Biol. 2010;77:42–8.

    Article  PubMed  Google Scholar 

  31. Harnevo LE, Agur Z. The dynamics of gene amplification described as a multitype compartmental model and as a branching process. Math Biosci. 1991;103:115–38.

    Article  CAS  PubMed  Google Scholar 

  32. Harnevo LE, Agur Z. Use of mathematical models for understanding the dynamics of gene amplification. Mutat Res. 1993;292:17–24.

    Article  CAS  PubMed  Google Scholar 

  33. Kimmel M, Axelrod DE. Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenecity. Genetics. 1990;125:663–44.

    Google Scholar 

  34. Birkhead BG, Rakin EM, Gallivan S, Dones L, Rubens RD. A mathematical model of the development of drug resistance to cancer chemotherapy. Eur J Cancer Clin Oncol. 1987;23:1421–7.

    Article  CAS  PubMed  Google Scholar 

  35. Panetta JC, Adam J. A mathematical model of cycle-specific chemotherapy. Math Comput Model. 1995;22:67–82.

    Article  Google Scholar 

  36. Cojocaru L, Agur Z. A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math Biosci. 1992;109:85–97.

    Article  CAS  PubMed  Google Scholar 

  37. Dibrov BF. Resonance effect in self-renewing tissues. J Theor Biol. 1998;192:15–33.

    Article  CAS  PubMed  Google Scholar 

  38. Gaffney EA. The application of mathematical modelling to aspects of adjuvant chemotherapy scheduling. J Math Biol. 2004;48:375–422.

    Article  CAS  PubMed  Google Scholar 

  39. Gaffney EA. The mathematical modelling of adjuvant chemotherapy scheduling: incorporating the effects of protocol rest phases and pharmacokinetics. Bull Math Biol. 2005;67:563–611.

    Article  CAS  PubMed  Google Scholar 

  40. Webb GF. Resonance phenomena in cell population chemotherapy models. Rocky Mt J Math. 1990;20:1195–216.

    Article  Google Scholar 

  41. Gregory WM, Birkhead BG, Souhami RL. A mathematical model of drug resistance applied to treatment for small-cell lung cancer. J Clin Oncol. 1988;6:457–61.

    CAS  PubMed  Google Scholar 

  42. Panetta JC. A mathematical model of drug resistance: heterogeneous tumors. Math Biosci. 1998;147(1):41–61.

    Article  CAS  PubMed  Google Scholar 

  43. Campbell LL, Polyak K. Breast tumor heterogeneity. Cell Cycle. 2007;6(19):2332–8.

    Article  CAS  PubMed  Google Scholar 

  44. Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44:2259–65.

    CAS  PubMed  Google Scholar 

  45. Park SY, Gonen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest. 2010;120(2):636–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Tomasetti C, Levy D. Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc Natl Acad Sci U S A. 2010;107(39):16766–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kimmel M, Axelrod DE. Branching processes in biology. New York: Springer; 2002.

    Book  Google Scholar 

  48. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, et al. Dynamics of chronic myeloid leukaemia. Nature. 2005;435:1267–70.

    Article  CAS  PubMed  Google Scholar 

  49. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23:1054–61.

    Article  CAS  PubMed  Google Scholar 

  50. Tomasetti C. A new hypothesis: imatinib affects leukemic stem cells in the same way it affects all other leukemic cells. Blood Cancer J. 2011;e19. doi:10.1038/bcj.2011.17.

    Google Scholar 

  51. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441:1068–74.

    Article  CAS  PubMed  Google Scholar 

  52. Giebel B, Zhang T, Beckmann J, Spanholtz J, Wernet P, Ho AD, et al. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood. 2006;107:2146–52.

    Article  CAS  PubMed  Google Scholar 

  53. Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell. 2007;1:541–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR. Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Tomasetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomasetti, C. (2014). Drug Resistance. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_15

Download citation

Publish with us

Policies and ethics