Skip to main content

Modeling Biomolecular Site Dynamics in Immunoreceptor Signaling Systems

  • Chapter
  • First Online:
A Systems Biology Approach to Blood

Abstract

The immune system plays a central role in human health. The activities of immune cells, whether defending an organism from disease or triggering a pathological condition such as autoimmunity, are driven by the molecular machinery of cellular signaling systems. Decades of experimentation have elucidated many of the biomolecules and interactions involved in immune signaling and regulation, and recently developed technologies have led to new types of quantitative, systems-level data. To integrate such information and develop nontrivial insights into the immune system, computational modeling is needed, and it is essential for modeling methods to keep pace with experimental advances. In this chapter, we focus on the dynamic, site-specific, and context-dependent nature of interactions in immunoreceptor signaling (i.e., the biomolecular site dynamics of immunoreceptor signaling), the challenges associated with capturing these details in computational models, and how these challenges have been met through use of rule-based modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol. 2011;29:527–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Chakraborty AK, Das J. Pairing computation with experimentation: a powerful coupling for understanding T cell signalling. Nat Rev Immunol. 2010;10:59–71.

    CAS  PubMed  Google Scholar 

  3. Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol. 2006;7:165–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, and the rest of the SBML Forum. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003;19:524–31.

    CAS  PubMed  Google Scholar 

  5. Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol. 2005;23:1509–15.

    Google Scholar 

  6. Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 2006;34:D689–91.

    Google Scholar 

  7. Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis 2010;31:2–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Cambier JC. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol. 1995;155: 3281–85.

    CAS  PubMed  Google Scholar 

  9. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W. Rules for modeling signal-transduction systems. Sci STKE. 2006;344: re6.

    Google Scholar 

  10. Hlavacek WS. Two challenges of systems biology. In: Stumpf MPH, Balding DJ, Girolami M, editors. Handbook of statistical systems biology. NJ: Wiley; 2011. pp. 3–14.

    Google Scholar 

  11. Chylek LA, Stites EC, Posner RG, Hlavacek WS. Innovations of the rule-based modeling approach. In: Prokop A, Csukás B, editors. Systems Biology: integrative biology and simulation tools. Vol 1. Dordrecht: Springer; 2013. pp. 273–300.

    Google Scholar 

  12. Faeder JR, Blinov ML, Hlavacek WS. Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol. 2009;500:113–67.

    CAS  PubMed  Google Scholar 

  13. Metzger H. Transmembrane signaling: the joy of aggregation. J Immunol. 1992;149:1477–87.

    CAS  PubMed  Google Scholar 

  14. Dintzis HM, Dintzis RZ, Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci U S A. 1976;73:3671–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Dintzis RZ, Middleton MH, Dintzis HM. Studies on the immunogenicity and tolerogenicity of T-independent antigens. J Immunol. 1983;131:2196–203.

    CAS  PubMed  Google Scholar 

  16. Houtman JC, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B, Appella E, Schuck P, Samelson LE. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol. 2006;13:798–805.

    CAS  PubMed  Google Scholar 

  17. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN. Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol. 2007;3:144.

    PubMed Central  PubMed  Google Scholar 

  18. Lipniacki T, Hat B, Faeder JR, Hlavacek WS. Stochastic effects and bistability in T cell receptor signaling. J Theor Biol. 2008;254:110–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Holst J, Wang H, Eder KD, Workman CJ, Boyd KL, Baquet Z, Singh H, Forbes K, Chruscinski A, Smeyne R, van Oers NS, Utz PJ, Vignali DA. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol. 2008;9:658–66.

    CAS  PubMed  Google Scholar 

  20. Chylek LA. Decoding the language of phosphorylation site dynamics. Sci Signal. 2013;6:jc2.

    Google Scholar 

  21. Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science. 2003;300:445–452.

    CAS  PubMed  Google Scholar 

  22. Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ. Exploring the diversity of complex metabolic networks. Bioinformatics. 2005;21:1603–09.

    CAS  PubMed  Google Scholar 

  23. Mu F, Williams RF, Unkefer CJ, Unkefer PJ, Faeder JR, Hlavacek WS. Carbon-fate maps for metabolic reactions. Bioinformatics. 2007;23:3193–99.

    CAS  PubMed  Google Scholar 

  24. Asztalos A, Daniels M, Sethi A, Shen T, Langan P, Redondo A, Gnanakaran S. A coarse-grained model for synergistic action of multiple enzymes on cellulose. Biotechnol Biofuels. 2012;5:55.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Faulon JL, Carbonell P. Reaction network generation. In: Faulon JL, Bender A, editors. Handbook of chemoinformatics algorithms. Boca Raton: Chapman & Hall/CRC Press; 2010. pp. 317–41.

    Google Scholar 

  26. Rangarajan S, Bhan A, Daoutidis P. Language-oriented rule-based reaction network generation and analysis: description of RING. Comput Chem Eng. 2012a;45:114–23.

    CAS  Google Scholar 

  27. Rangarajan S, Bhan A, Daoutidis P. Language-oriented rule-based reaction network generation and analysis: applications of RING. Comput Chem Eng. 2012b;46:141–52.

    CAS  Google Scholar 

  28. Jamalyaria F, Rohlfs R, Schwartz R. Queue-based method for efficient simulation of biological self-assembly systems. J Comput Phys. 2005;204:100–20.

    Google Scholar 

  29. Zhang T, Rohlfs R, Schwartz R. Implementation of a discrete event simulator for biological self-assembly systems. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA, editors. Proc 2005 Winter Simulat Conf; 2005. pp. 2223–31.

    Google Scholar 

  30. Marchisio MA, Colaiacovo M, Whitehead E, Stelling J. Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits. BMC Syst Biol. 2013;7:42.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Bugenhagen SM, Beard DA. Specification, construction, and exact reduction of state transition system models of biochemical processes. J Chem Phys. 2012;137:154108.

    PubMed Central  PubMed  Google Scholar 

  32. Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F, Lakshminarayana A, Gao F, Li Y, Loew LM. Virtual Cell modelling and simulation software environment. IET Syst Biol. 2008;2:352–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Mallavarapu A, Thomson M, Ullian B, Gunawardena J. Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J R Soc Interface. 2009;6:257–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Lok L, Brent R. Automatic generation of cellular reaction networks with Moleculizer 1.0. Nat Biotechnol. 2005;23:131–6.

    CAS  PubMed  Google Scholar 

  35. Lis M, Artyomov MN, Devadas S, Chakraborty AK. Efficient stochastic simulation of reaction-diffusion processes via direct compilation. Bioinformatics. 2009;25:2289–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Colvin J, Monine MI, Faeder JR, Hlavacek WS, Von Hoff DD, Posner RG. Simulation of large-scale rule- based models. Bioinformatics. 2009;25:910–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Colvin J, Monine MI, Gutenkunst R, Hlavacek WS, Von Hoff DD, Posner RG. RuleMonkey: software for stochastic simulation of rule-based models. BMC Bioinformatics. 2010;11:404.

    PubMed Central  PubMed  Google Scholar 

  38. Sneddon MW, Faeder JR, Emonet T. Efficient modeling, simulation, and coarse-graining of biological complexity with NFsim. Nat Methods. 2011;8:177–83.

    CAS  PubMed  Google Scholar 

  39. Xu W, Smith AM, Faeder JR, Marai GE. RuleBender: a visual interface for rule-based modeling. Bioinformatics. 2011;27:1721–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Clarke EM, Faeder JR, Harris LA, Langmead CJ, Legay A, Jha SK. Statistical model checking in BioLab: applications to the automated analysis of T-cell receptor signaling pathway. Lect Notes Comput Sci. 2008;5307:231–50.

    CAS  Google Scholar 

  41. Ollivier JF, Shahrezaei V, Swain P. Scalable rule-based modeling of allosteric proteins and biochemical networks. PLoS Comput Biol. 2010;6:e1000975.

    Google Scholar 

  42. Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dittrich P. Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics. 2010;11:307.

    PubMed Central  PubMed  Google Scholar 

  43. Smith AM, Xu W, Sun Y, Faeder JR, Marai GE. RuleBender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC Bioinformatics. 2012;13:S3.

    Google Scholar 

  44. Meier-Schellersheim M, Xu X, Angermann B, Kunkel E, Jin T, Germain RN. Key role of local regulation chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput Biol. 2006;2:e82.

    Google Scholar 

  45. Angermann BR, Klauschen F, Garcia AD, Prustel T, Zhang F, Germain RN, Meier-Schellersheim M. Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nat Methods. 2012;9:283–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Boutillier P, Feret J, Krivine J. KaSim3 reference manual. https://github.com/Kappa-Dev/KaSim. Accessed 6 Oct 2014.

  47. Andrews SS, Addy NJ, Brent R, Arkin AP. Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol. 2010;6:e1000705.

    Google Scholar 

  48. Andrews SS. Spatial and stochastic cellular modeling with the Smoldyn simulator. Methods Mol Biol. 2012;804:519–42.

    CAS  PubMed  Google Scholar 

  49. Zhang F, Angermann BR, Meier-Schellersheim M. The Simmune Modeler visual interface for creating signaling networks based on bi-molecular interactions. Bioinformatics. 2013;29:1229–30.

    PubMed Central  PubMed  Google Scholar 

  50. Klinke DJ II, Finley SD. Timescale analysis of rule-based biochemical reaction networks. Biotechnol Prog. 2012;28:33–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in Python using PySB. Mol Syst Biol. 2013;9:646.

    PubMed Central  PubMed  Google Scholar 

  52. Tiger CF, Krause F, Cedersund G, Palmér R, Klipp E, Hohmann S, Kitano H, Krantz M. A framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol. 2012;8:578.

    PubMed Central  PubMed  Google Scholar 

  53. Nag A, Monine MI, Faeder JR, Goldstein B. Aggregation of membrane proteins by cytosolic cross-linkers: theory and simulation of the LAT-Grb2-SOS1 system. Biophys J. 2009;96:2604–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. An GC, Faeder JR. Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR−4 signaling and preconditioning. Math Biosci. 2009;217:53–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Nag A, Monine MI, Blinov ML, Goldstein B. A detailed mathematical model predicts that serial engagement of IgE-FcεRI complexes can enhance Syk activation in mast cells. J Immunol. 2010;185:3268–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Monine MI, Posner RG, Savage PB, Faeder JR, Hlavacek WS. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell-surface receptor aggregates. Biophys J. 2010;98:48–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Nag A, Faeder JR, Goldstein B. Shaping the response: the role of FcεRI and Syk expression levels in mast cell signaling. IET Syst Biol. 2010;4:334–47.

    PubMed Central  PubMed  Google Scholar 

  58. Artyomov MN, Lis M, Devadas S, Davis MM, Chakraborty AK. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc Natl Acad Sci U S A. 2010;107:16916–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Nag A, Monine M, Perelson AS, Goldstein B. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2. PLoS ONE. 2012;7:e28758.

    Google Scholar 

  60. Barua D, Hlavacek WS, Lipniacki T. A computational model for early events in B cell antigen receptor signaling: analysis of the roles of Lyn and Fyn. J Immunol. 2012;189:646–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Mukherjee S, Zhu J, Zikherman J, Parameswaran R, Kadlecek TA, Wang Q, Au-Yeung B, Ploegh H, Kuriyan J, Das J, Weiss A. Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci Signal. 2013;6:ra1.

    Google Scholar 

  62. Barua D, Goldstein B. A mechanistic model of early FcεRI signaling: lipid rafts and the question of protection from dephosphorylation. PLoS ONE. 2012;7:e51669.

    Google Scholar 

  63. Mukhopadhyay H, Cordoba SP, Maini PK, van der Merwe PA, Dushek O. Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol. 2013;9:e1003004.

    Google Scholar 

  64. Liu Y, Barua D, Liu P, Wilson BS, Oliver JM, Hlavacek WS, Singh AK. Single-cell measurements of IgE-mediated FcεRI signaling using an integrated microfluidic platform. PLoS ONE. 2013;8:e60159.

    Google Scholar 

  65. Barua D, Faeder JR, Haugh JM. Structure-based kinetic models of modular signaling protein function: focus on Shp2. Biophys J. 2007;92:2290–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Barua D, Faeder JR, Haugh JM. Computational models of tandem SRC homology 2 domain interactions and application to phosphoinositide 3-kinase. J Biol Chem. 2008;283:7338–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Barua D, Faeder JR, Haugh JM. A bipolar clamp mechanism for activation of Jak-family protein tyrosine kinases. PLoS Comput Biol. 2009;5:e1000364.

    Google Scholar 

  68. Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM. Analysis and verification of the HMGB1 signaling pathway. BMC Bioinformatics. 2010;11(Suppl 7):S10.

    Google Scholar 

  69. Ray JC, Igoshin OA. Adaptable functionality of transcriptional feedback in bacterial two-component systems. PLoS Comput Biol. 2010;6:e1000676.

    Google Scholar 

  70. Malleshaiah MK, Shahrezaei V, Swain PS, Michnick SW. The scaffold protein Ste5 directly controls a switch-like mating decision in yeast. Nature. 2010;465:101–5.

    CAS  PubMed  Google Scholar 

  71. Dushek O, van der Merwe PA, Shahrezaei V. Ultrasensitivity in multisite phosphorylation of membrane-anchored proteins. Biophys J. 2011;100:1189–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol. 2011;7:e1001115.

    Google Scholar 

  73. Sorokina O, Sorokin A, Armstrong JD. Towards a quantitative model of the post-synaptic proteome. Mol BioSyst. 2011;7:2813–23.

    CAS  PubMed  Google Scholar 

  74. Thomson TM, Benjamin KR, Bush A, Love T, Pincus D, Resnekov O, Yu RC, Gordon A, Colman-Lerner A, Endy D, Brent R. Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proc Natl Acad Sci U S A. 2011;108:20265–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Geier F, Fengos G, Iber D. A computational analysis of the dynamic roles of talin, Dok1, and PIPKI for integrin activation. PLoS ONE. 2011;6:e24808.

    Google Scholar 

  76. Ghosh S, Prasad KV, Vishveshwara S, Chandra N. Rule-based modelling of iron homeostasis in tuberculosis. Mol BioSyst. 2011;7:2750–68.

    CAS  PubMed  Google Scholar 

  77. Abel SM, Roose JP, Groves JT, Weiss A, Chakraborty AK. The membrane environment can promote or suppress bistability in cell signaling networks. J Phys Chem B. 2012;116:3630–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Deeds EJ, Krivine J, Feret J, Danos V, Fontana W. Combinatorial complexity and compositional drift in protein interaction networks. PLoS ONE. 2012;7:e32032.

    Google Scholar 

  79. Kocieniewski P, Faeder JR, Lipniakci T. The interplay of double phosphorylation and scaffolding in MAPK pathways. J Theor Biol. 2012;295:116–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Michalski PJ, Loew LM. CaMKII activation and dynamics are independent of the holoenzyme structure: an infinite subunit holoenzyme approximation. Phys Biol. 2012;9:036010.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Tschernyschkow S, Herda S, Gruenert G, Döring V, Görlich D, Hofmeister A, Hoischen C, Dittrich P, Diekmann S, Ibrahim B. Rule-based modeling and simulations of the inner kinetochore structure. Prog Biophys Mol Biol. 2013;113:33–45.

    CAS  PubMed  Google Scholar 

  82. Kesseler KJ, Blinov ML, Elston TC, Kaufmann WK, Simpson DA. A predictive mathematical model of the DNA damage G2 checkpoint. J Theor Biol. 2013;320:159–69.

    CAS  PubMed  Google Scholar 

  83. Kozer N, Barua D, Orchard S, Nice EC, Burgess AW, Hlavacek WS, Clayton AH. Exploring higher-order EGFR oligomerisation and phosphorylation-a combined experimental and theoretical approach. Mol Biosyst. 2013;9:1849–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Falkenberg CV, Loew LM. Computational analysis of Rho GTPase cycling. PLoS Comput Biol. 2013;9:e1002831.

    Google Scholar 

  85. Kiselyov VV, Versteyhe S, Gauguin L, De Meyts P. Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation. Mol Syst Biol. 2009;5:243.

    PubMed Central  PubMed  Google Scholar 

  86. Sethi A, Goldstein B, Gnanakaran S. Quantifying intramolecular binding in multivalent interactions: A structure-based synergistic study on Grb2-Sos1 complex. PloS Comp Biol. 2011;7:e1002192.

    Google Scholar 

  87. Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol. 2002;158:1263–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Wilson BS, Pfeiffer JR, Surviladze Z, Gaudet EA, Oliver JM. High resolution mapping of mast cell membranes reveals primary and secondary domains of FcεRI and LAT. J Cell Biol. 2001;154:645–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Yang J, Monine MI, Faeder JR, Hlavacek WS. Kinetic Monte Carlo method for rule-based modeling of biochemical networks. Phys Rev E. 2008;78:031910.

    Google Scholar 

  90. Goldstein B, Perelson AS. Equilibrium theory for the clustering of bivalent cell surface receptors by trivalent ligands: Application to histamine release from basophils. Biophys J. 1984;45:1109–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Perelson AS, DeLisi C. Receptor clustering on a cell surface. I. Theory of receptor cross-linking by ligands bearing two chemically identical functional groups. Math Biosci. 1980;48:71–110.

    Google Scholar 

  92. Posner RG, Wofsy C, Goldstein B. The kinetics of bivalent ligand-bivalent receptor aggregation: ring formation and the breakdown of the equivalent site approximation. Math Biosci. 1995;126:171–90.

    CAS  PubMed  Google Scholar 

  93. Houtman JCD, Houghtling RA, Barda-Saad M, Toda Y, Samelson LE. Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J Immunol. 2005;175:2449–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. O’Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li QZ, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity. 2011;35:746–56.

    PubMed Central  PubMed  Google Scholar 

  95. Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem. 2011;80:273–99.

    CAS  PubMed  Google Scholar 

  96. Nguyen V, Cao L, Lin JT, Hung N, Ritz A, Yu K, Jianu R, Ulin SP, Raphael BJ, Laidlaw DH, Brossay L, Salomon AR. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation. Mol Cell Proteomics. 2009;8:2418–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Brockmeyer C, Paster W, Pepper D, Tan CP, Trudgian DC, McGowan S, Fu G, Gascoigne NR, Acuto O, Salek M. T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component. J Biol Chem. 2011;286:7535–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Dengjel J, Akimov V, Olsen JV, Bunkenborg J, Mann M, Blagoev B, Andersen JS. Quantitative proteomic assessment of very early cellular signaling events. Nat Biotechnol. 2007;25:566–8.

    CAS  PubMed  Google Scholar 

  99. Naik AK, Hanay MS, Hiebert WK, Feng XL, Roukes ML. Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol. 2009;4:445–50.

    CAS  PubMed  Google Scholar 

  100. Creamer MS, Stites EC, Aziz M, Cahill JA, Tan CW, Berens ME, Von Hoff DD, Hlavacek WS, Posner RG. Visualization, annotation and simulation of a large rule-based model for ErbB receptor signaling. BMC Syst Biol. 2012;6:107.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Jones RB, Gordus A, Krall JA, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature. 2006;439:168–74.

    CAS  PubMed  Google Scholar 

  102. Kaushansky A, Gordus A, Chang B, Rush J, MacBeath G. A quantitative study of the recruitment potential of all intracellular tyrosine residues on EGFR, FGFR1 and IGF1R. Mol BioSyst. 2008;4:643–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Hause RJ Jr, Leung KK, Barkinge JL, Ciaccio MF, Chuu CP, Jones RB. Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLoS ONE. 2012;7:e44471.

    Google Scholar 

  104. Koytiger G, Kaushansky A, Gordus A, Rush J, Sorger PK, MacBeath G. Phosphotyrosine signaling proteins that driver oncogenesis tend to be highly interconnected. Mol Cell Proteomics. 2013;12:1204–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell. 2010;143:1047–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, Regan CK, Merrill RK, Sommers CL, Lippincott-Schwartz J, Samelson LE. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity. 2011;35:705–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Danos V, Feret J, Fontana, W, Harmer R, Krivine J. Rule-based modelling of cellular signalling. Lect Notes Comput Sci. 2007;4703:17–41.

    Google Scholar 

  108. Yang J, Hlavacek WS. The efficiency of reactant site sampling in network-free simulation of rule-based models for biochemical systems. Phys Biol. 2011;8:055009.

    PubMed Central  PubMed  Google Scholar 

  109. Lander AD. The edges of understanding. BMC Biol. 2010;8:40.

    PubMed Central  PubMed  Google Scholar 

  110. Blank U, Launay P, Benhamou M, Monteiro RC. Inhibitory ITAMs as novel regulators of immunity. Immunol Rev. 2009;232:59–71.

    CAS  PubMed  Google Scholar 

  111. Chylek LA, Hu B, Blinov ML, Emonet T, Faeder JR, Goldstein B, Gutenkunst RN, Haugh JM, Lipniacki T, Posner RG, Yang J, Hlavacek WS. Guidelines for visualizing and annotating rule-based models. Mol BioSyst. 2011;7:2779–95.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Byron Goldstein for helpful discussions. We acknowledge support from NIH grant P50 GM085273. L.A.C. acknowledges support from the Center for Nonlinear Studies that made visits to Los Alamos possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Hlavacek PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chylek, L., Wilson, B., Hlavacek, W. (2014). Modeling Biomolecular Site Dynamics in Immunoreceptor Signaling Systems. In: Corey, S., Kimmel, M., Leonard, J. (eds) A Systems Biology Approach to Blood. Advances in Experimental Medicine and Biology, vol 844. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2095-2_12

Download citation

Publish with us

Policies and ethics