Skip to main content

Bone Marrow-Derived Ex Vivo Created Hematopoietic Chimeric Cells to Support Engraftment and Maintain Long-Term Graft Survival in Reconstructive Transplantation

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Vascularized composite allotransplantation (VCA) introduces a promising alternative approach to standard reconstructive procedures for severely disfigured patients. Currently, VCA research is focusing on the development of immunomodulatory protocols for tolerance induction. The ultimate goal is to reduce or preferably eliminate the need for toxic, lifelong immunosuppression and to prevent both acute and chronic rejection.

Currently, the most successful approaches for tolerance induction are chimerism-based protocols using cellular therapies. Chimerism originated in the early 1950s from work on small animal models and opened a new approach for tolerance induction that allowed for transition from the laboratory to the first clinical trials.

Siemionow’s group at Cleveland Clinic, based on their experience in developing multiple immunosuppressive protocols in VCA models, created a new bone marrow derived, ex vivo fused, donor–recipient chimeric cell therapy and tested its efficacy in VCA models.

This innovative chimeric cell therapy, combined with a short-term selective immunomodulatory protocol, prolonged VCA survival. This chapter describes a series of studies that led to the development and creation of chimeric cells, and it also presents the potential benefits of chimeric cell protocols. Successful application of chimeric cell protocol in VCA experimental models will advance the field of reconstructive transplantation toward clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACI:

August Copenhagen Irish (An inbred rat strain derived by breeding an August male with an Irish coat and a Copenhagen 2331 female)

Anti-αβTCR monoclonal antibody:

Anti-αβ T cell receptor monoclonal antibody

BMCs:

Bone marrow cells

BMT:

Bone marrow transplantation

CsA:

Cyclosporine A

CTL:

cytotoxic T lymphocytes

GVHD:

Graft-versus-host disease

Gy:

Gray (radiation unit)

HLA:

Human leukocyte antigen

LBN:

Lewis Brown Norway (An inbred rat strain derived by breeding a Brown Norway male and a Lewis female)mAb monoclonal antibodies

MHC:

Major histocompatibility complex

MLR:

Mixed lymphocyte reaction

NK:

Natural killer cells

TBI:

Total body irradiation

T-reg:

Regulatory T cells

VCA:

Vascularized composite allotransplantation

References

  1. Al-Adra DP, Anderson CC. Mixed chimerism and split tolerance: mechanisms and clinical correlations. Chimerism. 2011;2(4):89–101.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Alvarez-Dolado M, Pardal R, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425(6961):968–73.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson JM. Multinucleated giant cells. Curr Opin Hematol. 2000;7(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  4. Ayala R, Grande S, et al. Long-term follow-up of donor chimerism and tolerance after human liver transplantation. Liver Transpl. 2009;15(6):581–91.

    Article  PubMed  Google Scholar 

  5. Bachar-Lustig E, Rachamim N, et al. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med. 1995;1(12):1268–73.

    Article  CAS  PubMed  Google Scholar 

  6. Barber WH, Mankin JA, et al. Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation. 1991;51(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  7. Barski G, Sorieul S et al. Hybrid type cells in combined cultures of two different mammalian cell strains. J Natl Cancer Inst. 1961;26:1269–91.

    CAS  PubMed  Google Scholar 

  8. Beitinjaneh A, Burns LJ, et al. Solid organ transplantation in survivors of hematopoietic cell transplantation: a single institution case series and literature review. Clin Transpl. 2010;24(4):E94–102.

    Article  Google Scholar 

  9. Billingham RE, Medawar PB. Desensitization to skin homografts by injections of donor skin extracts. Ann Surg. 1953;137(4):444–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Billingham RE, Brent L, et al. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–6.

    Article  CAS  PubMed  Google Scholar 

  11. Bonde S, Pedram M, et al. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells. FASEB J. 2010;24(2):364–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bozkurt M, Klimczak A, et al. Composite osseomusculocutaneous sternum, ribs, thymus, pectoralis muscles, and skin allotransplantation model of bone marrow transplantation. Microsurgery. 2013;33(1):43–50.

    Article  PubMed  Google Scholar 

  13. Brandacher G, Ninkovic M, et al. The Innsbruck hand transplant program: update at 8 years after the first transplant. Transpl Proc. 2009;41(2):491–4.

    Article  CAS  Google Scholar 

  14. Brown R, Suen H, et al. Trogocytosis generates acquired regulatory T cells adding further complexity to the dysfunctional immune response in multiple myeloma. Oncoimmunology. 2012;1(9):1658–60.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Caridis DT, Liegeois A, et al. Enhanced survival of canine renal allografts of ALS- treated dogs given bone marrow. Transpl Proc. 1973;5(1):671–4.

    CAS  Google Scholar 

  16. Caumartin J, Lemaoult J, et al. Intercellular exchanges of membrane patches (trogocytosis) highlight the next level of immune plasticity. Transpl Immunol. 2006;17(1):20–2.

    Article  CAS  PubMed  Google Scholar 

  17. Chang J, Davis CL, et al. The impact of current immunosuppression strategies in renal transplantation on the field of reconstructive transplantation. J Reconstr Microsurg. 2012;28(1):7–19.

    Article  PubMed  Google Scholar 

  18. Chow T, Whiteley J, et al. The transfer of host MHC class I protein protects donor cells from NK Cell and macrophage mediated rejection during hematopoietic stem cell transplantation and engraftment in Mice. Stem Cells. 2013 Oct;31(10):2242-52.

    Article  CAS  PubMed  Google Scholar 

  19. Cone RE, Sprent J, et al. Antigen-binding specificity of isolated cell-surface immunoglobulin from thymus cells activated to histocompatibility antigens. Proc Natl Acad Sci U S A. 1972;69(9):2556–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Demetris AJ, Murase N, et al. The dichotomous functions of passenger leukocytes in solid-organ transplantation. Adv Nephrol Necker Hosp. 1995;24:341–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Dittmar T, Zanker KS. Cell fusion in health and disease. Volume II: cell fusion in disease. Introduction. Adv Exp Med Biol. 2011;714:1–3.

    CAS  PubMed  Google Scholar 

  22. Eisenberg LM, Eisenberg CA. Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res C Embryo Today. 2003;69(3):209–18.

    Article  CAS  PubMed  Google Scholar 

  23. Eisenberg G, Uzana R, et al. Imprinting of lymphocytes with melanoma antigens acquired by trogocytosis facilitates identification of tumor-reactive T cells. J Immunol. 2013;190(11):5856–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Elwood ET, Larsen CP, et al. Microchimerism and rejection in clinical transplantation. Lancet. 1997;349(9062):1358–60.

    Article  CAS  PubMed  Google Scholar 

  25. Ford McIntyre MS, Young KJ, et al. Cutting edge: in vivo trogocytosis as a mechanism of double negative regulatory T cell-mediated antigen-specific suppression. J Immunol. 2008;181(4):2271–5.

    Article  CAS  PubMed  Google Scholar 

  26. Graca L, Daley S, et al. Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning. BMC Immunol. 2006;7:9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B. 2007;111(35):10453–60.

    Article  CAS  PubMed  Google Scholar 

  28. Hancock WW, Sayegh MH, et al. Blocking of mononuclear cell accumulation, cytokine production, and endothelial activation within rat cardiac allografts by CD4 monoclonal antibody therapy. Transplantation. 1992;53(6):1276–80.

    Article  CAS  PubMed  Google Scholar 

  29. Hartner WC, De Fazio SR, et al. Prolongation of renal allograft survival in antilymphocyte-serum-treated dogs by postoperative injection of density-gradient-fractionated donor bone marrow. Transplantation. 1986;42(6):593–7.

    Article  CAS  PubMed  Google Scholar 

  30. Hautz T, Engelhardt TO, et al. World experience after more than a decade of clinical hand transplantation: update on the Innsbruck program. Hand Clin. 2011;27(4):423–31, viii.

    Article  PubMed  Google Scholar 

  31. Heaf J. Bone marrow function during quadruple immunosuppressive therapy after renal transplantation. Clin Nephrol. 1993;40(6):332–8.

    CAS  PubMed  Google Scholar 

  32. Hequet O, Morelon E, et al. Allogeneic donor bone marrow cells recovery and infusion after allogeneic face transplantation from the same donor. Bone Marrow Transpl. 2008;41(12):1059–61.

    Article  CAS  Google Scholar 

  33. Huang JF, Yang Y, et al. TCR-Mediated internalization of peptide-MHC complexes acquired by T cells. Science. 1999;286(5441):952–4.

    Article  CAS  PubMed  Google Scholar 

  34. Huang CA, Fuchimoto Y, et al. Posttransplantation lymphoproliferative disease in miniature swine after allogeneic hematopoietic cell transplantation: similarity to human PTLD and association with a porcine gammaherpesvirus. Blood. 2001;97(5):1467–73.

    Article  CAS  PubMed  Google Scholar 

  35. Hudrisier D, Riond J, et al. Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J Immunol. 2001;166(6):3645–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hwang I, Huang JF, et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J Exp Med. 2000;191(7):1137–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ildstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984;307(5947):168–70.

    Article  CAS  PubMed  Google Scholar 

  38. Inceoglu S, Siemionow M, et al. The effect of combined immunosuppression with systemic low-dose cyclosporin and topical fluocinolone acetonide on the survival of rat hind-limb allografts. Ann Plast Surg. 1994;33(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  39. Jimi E, Akiyama S, et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol. 1999;163(1):434–42.

    CAS  PubMed  Google Scholar 

  40. Joffre O, Gorsse N, et al. Induction of antigen-specific tolerance to bone marrow allografts with CD4 + CD25 + T lymphocytes. Blood. 2004;103(11):4216–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Johansson CB, Youssef S, et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol. 2008;10(5):575–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Joly E, Hudrisier D. What is trogocytosis and what is its purpose? Nat Immunol. 2003;4(9):815.

    Article  CAS  PubMed  Google Scholar 

  43. Kanamoto A, Maki T. Chimeric donor cells play an active role in both induction and maintenance phases of transplantation tolerance induced by mixed chimerism. J Immunol. 2004;172(3):1444–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kaufman CL, Breidenbach W. World experience after more than a decade of clinical hand transplantation: update from the Louisville hand transplant program. Hand Clin. 2011;27(4):417–21, vii–viii.

    Article  PubMed  Google Scholar 

  45. Kawai T, Sogawa H, et al. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transpl. 2004;4(9):1391–8.

    Article  CAS  Google Scholar 

  46. Kawai T, Cosimi AB, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358(4):353–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kean LS, Adams AB, et al. Induction of chimerism in rhesus macaques through stem cell transplant and costimulation blockade-based immunosuppression. Am J Transpl. 2007;7(2):320–35.

    Article  CAS  Google Scholar 

  48. Ko S, Deiwick A, et al. The functional relevance of passenger leukocytes and microchimerism for heart allograft acceptance in the rat. Nat Med. 1999;5(11):1292–7.

    Article  CAS  PubMed  Google Scholar 

  49. Koenecke C, Hertenstein B, et al. Solid organ transplantation after allogeneic hematopoietic stem cell transplantation: a retrospective, multicenter study of the EBMT. Am J Transpl. 2010;10(8):1897–906.

    Article  CAS  Google Scholar 

  50. Kuhr CS, Allen MD, et al. Tolerance to vascularized kidney grafts in canine mixed hematopoietic chimeras. Transplantation. 2002;73(9):1487–92.

    Article  PubMed  Google Scholar 

  51. Kuhr CS, Yunusov M, et al. Long-term tolerance to kidney allografts in a preclinical canine model. Transplantation. 2007;84(4):545–7.

    Article  PubMed  Google Scholar 

  52. Kulahci Y, Siemionow M. A new composite hemiface/mandible/tongue transplantation model in rats. Ann Plast Surg. 2010;64(1):114–21.

    Article  CAS  PubMed  Google Scholar 

  53. Kulahci Y, Klimczak A, et al. Long-term survival of composite hemiface/mandible/tongue allografts correlates with multilineage chimerism development in the lymphoid and myeloid compartments of recipients. Transplantation. 2010;90(8):843–52.

    Article  CAS  PubMed  Google Scholar 

  54. LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 2002;111(4):589–601.

    Article  CAS  PubMed  Google Scholar 

  55. Larsen CP, Austyn JM, et al. The role of graft-derived dendritic leukocytes in the rejection of vascularized organ allografts. Recent findings on the migration and function of dendritic leukocytes after transplantation. Ann Surg. 1990;212(3):308–15; discussion 316–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. LeMaoult J, Caumartin J, et al. Exchanges of membrane patches (trogocytosis) split theoretical and actual functions of immune cells. Hum Immunol. 2007;68(4):240–3.

    Article  CAS  PubMed  Google Scholar 

  57. LeMaoult J, Caumartin J, et al. Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood. 2007;109(5):2040–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lentz BR. Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem Phys Lipids. 1994;73(1–2):91–106.

    Article  CAS  PubMed  Google Scholar 

  59. Lentz BR. PEG as a tool to gain insight into membrane fusion. Eur Biophys J. 2007;36(4–5):315–26.

    Article  CAS  PubMed  Google Scholar 

  60. Li LH, Hensen ML, et al. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation. Biophys J. 1996;71(1):479–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Liegeois A, Caridis T, et al. Renal allograft in the dog. A new method for survival prolongation. Nouv Presse Med. 1973;2(20):1351–4.

    CAS  PubMed  Google Scholar 

  62. Marcenaro E, Pesce S, et al. KIR2DS1-dependent acquisition of CCR7 and migratory properties by human NK cells interacting with allogeneic HLA-C2 + DCs or T-cell blasts. Blood. 2013;121(17):3396–401.

    Article  CAS  PubMed  Google Scholar 

  63. Mathew JM, Miller J. Immunoregulatory role of chimerism in clinical organ transplantation. Bone Marrow Transpl. 2001;28(2):115–9.

    Article  CAS  Google Scholar 

  64. Merkel KD, Erdmann JM, et al. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol. 1999;154(1):203–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Monaco AP, Wood ML. Studies on heterologous antilymphocyte serum in mice. VII. Optimal cellular antigen for induction of immunologic tolerance with antilymphocyte serum. Transpl Proc. 1970;2(4):489–96.

    CAS  Google Scholar 

  66. Monaco AP, Clark AW, et al. Possible active enhancement of a human cadaver renal allograft with antilymphocyte serum (ALS) and donor bone marrow: case report of an initial attempt. Surgery. 1976;79(4):384–92.

    CAS  PubMed  Google Scholar 

  67. Muramatsu K, Kuriyama R, et al. Intragraft chimerism following composite tissue allograft. J Surg Res. 2009;157(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura K, Nakayama M, et al. Fratricide of natural killer cells dressed with tumor-derived NKG2D ligand. Proc Natl Acad Sci U S A. 2013;110(23):9421–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Nakayama M, Takeda K, et al. Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4 + T cells. Proc Natl Acad Sci U S A. 2011;108(45):18360–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Nasir S, Bozkurt M, et al. Large antigenic skin load in total abdominal wall transplants permits chimerism induction. Ann Plast Surg. 2008;61(5):572–9.

    Article  CAS  PubMed  Google Scholar 

  71. Nasir S, Bozkurt M, et al. Correlation of chimerism with graft size and revascularization in vascularized and nonvascularized skin allografts. Ann Plast Surg. 2009;62(4):430–8.

    Article  CAS  PubMed  Google Scholar 

  72. Nikbin B, Talebian F, et al. Chimerism: a new look. Urol J. 2007;4(1):1–9.

    PubMed  Google Scholar 

  73. Norwood TH, Zeigler CJ, et al. Dimethyl sulfoxide enhances polyethylene glycol-mediated somatic cell fusion. Somatic Cell Genet. 1976;2(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  74. Nygren JM, Jovinge S, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10(5):494–501.

    Article  CAS  PubMed  Google Scholar 

  75. Opelz G, Terasaki PI. Absence of immunization effect in human-kidney retransplantation. N Engl J Med. 1978;299(8):369–74.

    Article  CAS  PubMed  Google Scholar 

  76. Opelz G, Terasaki PI. Improvement of kidney-graft survival with increased numbers of blood transfusions. N Engl J Med. 1978;299(15):799–803.

    Article  CAS  PubMed  Google Scholar 

  77. Oren-Suissa M, Podbilewicz B. Evolution of programmed cell fusion: common mechanisms and distinct functions. Dev Dyn. 2010;239(5):1515–28.

    Article  CAS  PubMed  Google Scholar 

  78. Ozer K, Gurunluoglu R, et al. Extension of composite tissue allograft survival across major histocompatibility barrier under short course of anti-lymphocyte serum and cyclosporine a therapy. J Reconstr Microsurg. 2003;19(4):249–56.

    Article  PubMed  Google Scholar 

  79. Ozer K, Izycki D, et al. Development of donor-specific chimerism and tolerance in composite tissue allografts under alphabeta-T-cell receptor monoclonal antibody and cyclosporine a treatment protocols. Microsurgery. 2004;24(3):248–54.

    Article  PubMed  Google Scholar 

  80. Ozer K, Oke R, et al. Induction of tolerance to hind limb allografts in rats receiving cyclosporine A and antilymphocyte serum: effect of duration of the treatment. Transplantation. 2003;75(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  81. Petruzzo P, Lanzetta M, et al. The International Registry on hand and composite tissue transplantation. Transplantation. 2010;90(12):1590–4.

    Article  PubMed  Google Scholar 

  82. Petruzzo P, Testelin S, et al. First human face transplantation: 5 years outcomes. Transplantation. 2012;93(2):236–40.

    Article  PubMed  Google Scholar 

  83. Pilat N, Wekerle T. Combining Treg therapy with mixed chimerism: Getting the best of both worlds. Chimerism. 2010;1(1):26–9.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Rahhal DN, Xu H, et al. Dissociation between peripheral blood chimerism and tolerance to hindlimb composite tissue transplants: preferential localization of chimerism in donor bone. Transplantation. 2009;88(6):773–81.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Rezzani R. Cyclosporine A and adverse effects on organs: histochemical studies. Prog Histochem Cytochem. 2004;39(2):85–128.

    Article  CAS  PubMed  Google Scholar 

  86. Ricordi C, Karatzas T, et al. High-dose donor bone marrow infusions to enhance allograft survival: the effect of timing. Transplantation. 1997;63(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  87. Riond J, Elhmouzi J, et al. Capture of membrane components via trogocytosis occurs in vivo during both dendritic cells and target cells encounter by CD8(+) T cells. Scand J Immunol. 2007;66(4):441–50.

    Article  CAS  PubMed  Google Scholar 

  88. Rizvi AZ, Swain JR, et al. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci U S A. 2006;103(16):6321–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Rosenits K, Keppler SJ, et al. T cells acquire cell surface determinants of APC via in vivo trogocytosis during viral infections. Eur J Immunol. 2010;40(12):3450–7.

    Article  CAS  PubMed  Google Scholar 

  90. Rossi EA, Goldenberg DM, et al. Trogocytosis of multiple B-cell surface markers by CD22-targeting with epratuzumab. Blood. 2013;122(17):3020-9.

    Article  CAS  PubMed  Google Scholar 

  91. Rugeles MT, Aitouche A, et al. Evidence for the presence of multilineage chimerism and progenitors of donor dendritic cells in the peripheral blood of bone marrow-augmented organ transplant recipients. Transplantation. 1997;64(5):735–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Sachs DH, Sykes M, et al. Immuno-intervention for the induction of transplantation tolerance through mixed chimerism. Semin Immunol. 2011;23(3):165–73.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Salvatierra O, Jr, Vincenti F, et al. Deliberate donor-specific blood transfusions prior to living related renal transplantation. A new approach. Ann Surg. 1980;192(4):543–52.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Scandling JD, Busque S, et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med. 2008;358(4):362–8.

    Article  CAS  PubMed  Google Scholar 

  95. Scandling JD, Busque S, et al. Induced immune tolerance for kidney transplantation. N Engl J Med. 2011;365(14):1359–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Schneeberger S, Landin L, et al. Achievements and challenges in composite tissue allotransplantation. Transpl Int. 2011;24(8):760–9.

    Article  PubMed  Google Scholar 

  97. Schneeberger S, Gorantla VS, et al. Upper-extremity transplantation using a cell-based protocol to minimize immunosuppression. Ann Surg. 2013;257(2):345–51.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Seung E, Iwakoshi N, et al. Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood. 2000;95(6):2175–82.

    CAS  PubMed  Google Scholar 

  99. Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med. 1989;169(2):493–502.

    Article  CAS  PubMed  Google Scholar 

  100. Siemionow M, Ortak T, et al. Induction of tolerance in composite-tissue allografts. Transplantation. 2002;74(9):1211–7.

    Article  CAS  PubMed  Google Scholar 

  101. Siemionow M, Gozel-Ulusal B, et al. Functional tolerance following face transplantation in the rat. Transplantation. 2003;75(9):1607–9.

    Article  PubMed  Google Scholar 

  102. Siemionow MZ, Izycki DM, et al. Donor-specific tolerance in fully major histocompatibility major histocompatibility complex-mismatched limb allograft transplants under an anti-alphabeta T-cell receptor monoclonal antibody and cyclosporine A protocol. Transplantation. 2003;76(12):1662–8.

    Article  CAS  PubMed  Google Scholar 

  103. Siemionow M, Demir Y, et al. Development and maintenance of donor-specific chimerism in semi-allogenic and fully major histocompatibility complex mismatched facial allograft transplants. Transplantation. 2005;79(5):558P.

    Article  CAS  PubMed  Google Scholar 

  104. Siemionow MZ, Demir Y, et al. Facial tissue allograft transplantation. Transpl Proc. 2005;37(1):201–4.

    Article  CAS  Google Scholar 

  105. Siemionow M, Ozer K, et al. A new method of bone marrow transplantation leads to extension of skin allograft survival. Transpl Proc. 2005;37(5):2309–14.

    Article  CAS  Google Scholar 

  106. Siemionow M, Zielinski M, et al. Intraosseus transplantation of donor-derived hematopoietic stem and progenitor cells induces donor-specific chimerism and extends composite tissue allograft survival. Transpl Proc. 2005;37(5):2303–8.

    Article  CAS  Google Scholar 

  107. Somanchi SS, Somanchi A, et al. Engineering lymph node homing of ex vivo-expanded human natural killer cells via trogocytosis of the chemokine receptor CCR7. Blood. 2012;119(22):5164–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Starzl TE. Chimerism and tolerance in transplantation. Proc Natl Acad Sci U S A. 2004;101(Suppl 2):14607–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Starzl TE, Demetris AJ, et al. Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation. 1993;55(6):1272–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Starzl TE, Demetris AJ, et al. Migratory nonparenchymal cells after organ allotransplantation: with particular reference to chimerism and the liver. Prog Liver Dis. 1994;12:191–213.

    CAS  PubMed  Google Scholar 

  111. Tatari-Calderone Z, Semnani RT, et al. Acquisition of CD80 by human T cells at early stages of activation: functional involvement of CD80 acquisition in T cell to T cell interaction. J Immunol. 2002;169(11):6162–9.

    Article  CAS  PubMed  Google Scholar 

  112. Terada N, Hamazaki T, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002;416(6880):542–5.

    Article  CAS  PubMed  Google Scholar 

  113. Thomas FT, Carver FM, et al. Long-term incompatible kidney survival in outbred higher primates without chronic immunosuppression. Ann Surg. 1983;198(3):370–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Thomas JM, Carver FM, et al. Renal allograft tolerance induced with ATG and donor bone marrow in outbred rhesus monkeys. Transplantation. 1983;36(1):104–6.

    Article  CAS  PubMed  Google Scholar 

  115. Thomson AW, Lu L, et al. In vitro propagation and homing of liver-derived dendritic cell progenitors to lymphoid tissues of allogeneic recipients. Implications for the establishment and maintenance of donor cell chimerism following liver transplantation. Transplantation. 1995;59(4):544–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Tomita Y, Sachs DH, et al. Additional monoclonal antibody (mAB) injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation. Transplantation. 1996;61(3):469–77.

    Article  CAS  PubMed  Google Scholar 

  117. Ulusal BG, Ulusal AE, et al. A new composite facial and scalp transplantation model in rats. Plast Reconstr Surg. 2003;112(5):1302–11.

    Article  PubMed  Google Scholar 

  118. Vassilopoulos G, Wang PR, et al. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;422(6934):901–4.

    Article  CAS  PubMed  Google Scholar 

  119. Walker J, Opelz G, et al. Correlation of MLC response with graft survival in cadaver and related donor kidney transplants. Transplant Proc. 1978;10(4):949–51.

    CAS  PubMed  Google Scholar 

  120. Wang X, Willenbring H, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422(6934):897–901.

    Article  CAS  PubMed  Google Scholar 

  121. Weimann JM, Charlton CA, et al. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci U S A. 2003;100(4):2088–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Wekerle T, Sayegh MH, et al. Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J Exp Med. 1998;187(12):2037–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Xiang J, Huang H, et al. A new dynamic model of CD8 + T effector cell responses via CD4 + T helper-antigen-presenting cells. J Immunol. 2005;174(12):7497–505.

    Article  CAS  PubMed  Google Scholar 

  124. Yamanaka N, Wong CJ, et al. Bone marrow transplantation results in human donor blood cells acquiring and displaying mouse recipient class I MHC and CD45 antigens on their surface. PLoS One. 2009;4(12):e8489.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Yazici I, Unal S, et al. Composite hemiface/calvaria transplantation model in rats. Plast Reconstr Surg. 2006;118(6):1321–7.

    Article  CAS  PubMed  Google Scholar 

  126. Yazici I, Carnevale K, et al. A new rat model of maxilla allotransplantation. Ann Plast Surg. 2007;58(3):338–44.

    Article  CAS  PubMed  Google Scholar 

  127. Ying QL, Nichols J, et al. Changing potency by spontaneous fusion. Nature. 2002;416(6880):545–8.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang Y, McClellan M, et al. Daclizumab reduces CD25 levels on T cells through monocyte-mediated trogocytosis. Mult Scler. 2014 Feb;20(2):156–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Siemionow MD, PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siemionow, M., Cwykiel, J., Madajka, M. (2015). Bone Marrow-Derived Ex Vivo Created Hematopoietic Chimeric Cells to Support Engraftment and Maintain Long-Term Graft Survival in Reconstructive Transplantation. In: Brandacher, G. (eds) The Science of Reconstructive Transplantation. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2071-6_16

Download citation

Publish with us

Policies and ethics