Skip to main content

Theoretical Microrheology

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The importance of microrheology in the study of biological systems has a long and rich history, tracing its roots to the work of the botanist Robert Brown in the early nineteenth century. Indeed, passive microrheology and Brownian motion are one and the same. Brown’s observation of microscopic pollen grains dancing about in water was initially thought to reveal some sort of “fundamental life force.” However, upon further investigation, it turned out the motion depended only on the microscopically small size of the particles. The mysterious phenomenon went unexplained until the turn of the next century when Einstein and Perrin utilized Brownian motion to prove the atomic nature of matter. In addition to this profound result, the foundation of modern-day passive microrheology had been laid. Einstein combined the theory of diffusion with the Stokes’ solutions for creeping flow to yield the Stokes–Einstein relation connecting observable particle motion—diffusion—to material properties: the viscosity. Perrin’s experiments confirmed the theory. But Einstein’s arguments and the Stokes–Einstein relation rely on the existence of equilibrium and other narrow criteria. New approaches have extended the idea of tracking the motion of a Brownian particle to understand material properties far beyond this limited model. These advancements are critical to the study of many biological systems which conduct much of their function in a nonequilibrium condition. In this chapter we will see how one can study biological systems from a rheological perspective, showing the unique role played by microrheology in understanding such systems. In a sense, Brown’s initial hypothesis was not too far off the mark: rather than being driven by life, Brownian motion plays the role of the invisible hand that drives many of the processes required for life to proceed and indeed may have played a role in the very origin of the life process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Equation (3.5) is appropriate for consideration of fluid relaxation in the sense of a steady flow. It should not be confused with the unsteady Stokes equations which, used in conjunction with a Langevin equation, are appropriate for the study of vorticity diffusion in molecular liquids and the time-dependent Stokes drag. Further discussion of the topic may be found in e.g. Russel (1981) [73].

  2. 2.

    Colloid motion and the associated Stokes drag reach steady state over a short but finite time. However, over times relevant to study of diffusion coefficients, the unsteadiness in particle motion is superfluous. Further discussion of the topic may be found in, e.g., Russel (1981) [73].

  3. 3.

    Batchelor combined statistical mechanics theory and the hydrodynamics of Stokes flow to derive expressions and some values for the coefficients K ij , C, and S ij by modeling three systems: particle velocity during sedimentation, gradient diffusion, and tracer diffusion in a polydisperse suspension. For each an average of the appropriate hydrodynamic functions for particle motion is weighted by the distribution of positions of particle pairs [6, 69].

  4. 4.

    The idea of a fixed force or fixed velocity is an approximation, the accuracy of which is dictated by the uniformity of the applied field or the stiffness of the optical trap. Such approximations can be made quite accurate [37, 38].

References

  1. E.M. App, R. Kieselmann, D. Reinhardt, H. Lindemann, B. Dasgupta, M. King, P. Brand, Chest 114(1), 171 (1998)

    Google Scholar 

  2. R. Banerjee, J.R. Bellare, R.R. Puniyani, Biochem. Eng. J. 7(3), 195 (2001)

    Google Scholar 

  3. R. Wüstneck, N. Wüstneck, B. Moser, U. Pison, Langmuir 18(4), 1125 (2002)

    Google Scholar 

  4. S.K. Lai, Y.Y. Wang, D. Wirtz, J. Hanes, Adv. Drug Deliv. Rev. 61(2), 86 (2009)

    Google Scholar 

  5. H.A. Barnes, H.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)

    MATH  Google Scholar 

  6. G.K. Batchelor, J. Fluid Mech. 74, 1 (1976)

    MATH  MathSciNet  ADS  Google Scholar 

  7. J. Bergenholtz, J.F. Brady, M. Vicic, J. Fluid Mech. 456, 239 (2002)

    MATH  ADS  Google Scholar 

  8. H.A. Barnes, J. Rheol. 33(2), 329 (1989)

    ADS  Google Scholar 

  9. P. D’Haene, J. Mewis, G. Fuller, J. Colloid Interface Sci. 156(2), 350 (1993)

    Google Scholar 

  10. J.W. Bender, N.J. Wagner, J. Colloid Interface Sci. 172(1), 171 (1995)

    Google Scholar 

  11. B.J. Maranzano, N.J. Wagner, J. Chem. Phys. 117(22), 10291 (2002)

    ADS  Google Scholar 

  12. M.E. Mackay, B. Kaffashi, J. Colloid Interface Sci. 174(1), 117 (1995)

    Google Scholar 

  13. H. Watanabe, T. Sato, K. Osaki, Macromolecules 29, 3890 (1996)

    ADS  Google Scholar 

  14. H. Watanabe, M..L. Yao, Y. A., K. Osaki, T. Shikata, H. Niwa, Y. Morishima, Rheo. Acta 35(11), 443 (1996)

    Google Scholar 

  15. B. Kaffashi, V.T. O’Brien, M.E. Mackay, S.M. Underwood, J. Colloid Interf. Sci. 187(1), 22 (1997)

    Google Scholar 

  16. D.R. Foss, Rheological behavior of colloidal suspensions: the effects of hydrodynamic interactions. Ph.D. thesis, California Institute of Technology, 1999

    Google Scholar 

  17. R.N. Zia, J.F. Brady, J. Rheol. 57(2), 457 (2013)

    ADS  Google Scholar 

  18. A.C. Pipkin, Lectures on Viscoelasticity Theory (Springer, New York, 1986)

    Google Scholar 

  19. R.A. Lionberger, W.B. Russel, J. Rheol. 38(6), 1885 (1994)

    ADS  Google Scholar 

  20. J.F. Brady, J. Chem. Phys. 99(1), 567 (1993)

    ADS  Google Scholar 

  21. A.S. Khair, J.F. Brady, J. Rheol. 49(6), 1449 (2005)

    ADS  Google Scholar 

  22. J.W. Swan, R.N. Zia, J.F. Brady, J. Rheol. 58(1), 1 (2014)

    ADS  Google Scholar 

  23. G.K. Batchelor, J. Fluid Mech. 52(2), 245 (1972)

    MATH  MathSciNet  ADS  Google Scholar 

  24. J.F. Brady, J. Chem. Phys. 98(4), 3335 (1993)

    ADS  Google Scholar 

  25. J.F. Morris, J.F. Brady, J. Fluid Mech. 312, 223 (1996)

    MATH  ADS  Google Scholar 

  26. C. Gao, S.D. Kulkarni, J.F. Morris, J.F. Gilchrist, Phys. Rev. E. 81(4), 041403 (2010)

    ADS  Google Scholar 

  27. X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Science 333(6047), 1276 (2011)

    ADS  Google Scholar 

  28. G.L. Lukacs, P. Haggie, O. Seksek, D. Lechardeur, N. Freedman, A.S. Verkman, J. Biol. Chem. 275(3), 1625 (1999)

    Google Scholar 

  29. A.S. Verkman, Trends Biochem. Sci. 27(1), 27 (2002)

    Google Scholar 

  30. J. Suh, D. Wirtz, J. Hanes, PNAS 100(7), 3738 (2003)

    Google Scholar 

  31. J.R. Heath, M.E. Davis, L. Hood, Sci. Am. 300, 44 (2009)

    Google Scholar 

  32. A. Einstein, Ann. der Physik 19(4), 371 (1906)

    MATH  ADS  Google Scholar 

  33. J.B. Perrin, Ann. de Chimie et de Physique (VIII) 18, 5 (1909)

    Google Scholar 

  34. F.C. MacKintosh, C.F. Schmidt, Curr. Op. Colloid Interf. Sci. 4(1), 300 (1999)

    Google Scholar 

  35. C.P. Brangwynne, C.R. Eckmann, D.S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher, A.A. Hyman, Science 324(5935), 1729 (2009)

    ADS  Google Scholar 

  36. J.C. Crocker, D.G. Grier, J. Colloid Interf. Sci. 179(1), 298 (1996)

    Google Scholar 

  37. P. Habdas, D. Schaar, A.C. Levitt, E.R. Weeks, Europhys. Lett. 67(3), 477 (2004)

    ADS  Google Scholar 

  38. A. Meyer, A. Marshall, B.G. Bush, E.M. Furst, J. Rheol. 50(1), 77 (2006)

    ADS  Google Scholar 

  39. T.M. Squires, J.F. Brady, Phys. Fluids 17(7), 073101 (2005)

    ADS  Google Scholar 

  40. A.S. Khair, J.F. Brady, J. Fluid Mech. 557, 73 (2006)

    MATH  MathSciNet  ADS  Google Scholar 

  41. L.G. Wilson, A.W. Harrison, A.B. Schofield, J. Arlt, W.C.K. Poon, J. Phys. Chem.B 113(12), 3806 (2009)

    Google Scholar 

  42. R.N. Zia, J.F. Brady, J. Fluid Mech. 658, 188 (2010)

    MATH  ADS  Google Scholar 

  43. R.N. Zia, J.F. Brady, J. Rheol. 56(5), 1175 (2012)

    ADS  Google Scholar 

  44. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74(7), 1250 (1995)

    ADS  Google Scholar 

  45. Q. Lu, M.J. Solomon, Phys. Rev. E 66(6), 061504 (2002)

    ADS  Google Scholar 

  46. A.R. Bausch, F. Ziemann, A.A. Boulbitch, K. Jacobson, E. Sackmann, Biophys J. 75(4), 2038 (1998)

    Google Scholar 

  47. W.H. Guilford, R.C. Lantz, R.W. Gore, Am. J. Physiol-Cell. Ph. 268(5), C1308 (1995)

    Google Scholar 

  48. A.W.C. Lau, B.D. Hoffman, A. Davies, J.C. Crocker, T.C. Lubensky, Phys. Rev. Lett. 91(19), 198101 (2003)

    ADS  Google Scholar 

  49. T. Gisler, D.A. Weitz, Phys. Rev. Lett. 82, 1606 (1999)

    ADS  Google Scholar 

  50. F. Ziemann, J. Rädler, E. Sackmann, Biophys. J. 66(6), 2210 (1994)

    ADS  Google Scholar 

  51. H. Freundlich, W. Seifriz, Z. Phys. Chem. 104, 233 (1923)

    Google Scholar 

  52. T. Mason, K. Ganesan, J.H. Van Zanten, D. Wirtz, S.C. Kuo, Phys. Rev. Lett. 79(17), 3282 (1997)

    ADS  Google Scholar 

  53. J.C. Crocker, J. Chem. Phys. 106(8), 2837 (1997)

    ADS  Google Scholar 

  54. J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G. Yodh, D.A. Weitz, Phys. Rev. Lett. 85(4), 888 (2000)

    ADS  Google Scholar 

  55. A.J. Levine, T.C. Lubensky, Phys. Rev. Lett. 85, 1774 (2000)

    ADS  Google Scholar 

  56. J.C. Crocker, J.A. Matteo, A.D. Dinsmore, A.G. Yodh, Phys. Rev. Lett. 82(21), 4352 (1999)

    ADS  Google Scholar 

  57. V. Breedveld, D.J. Pine, J. Mat. Sci. 38(22), 4461 (2003)

    ADS  Google Scholar 

  58. K.M. Schultz, E.M. Furst, Lab on a Chip 11, 3802 (2011)

    Google Scholar 

  59. E.M. Furst, Curr. Opin. Coll. Surf. Sci. 10, 79 (2005)

    Google Scholar 

  60. I. Sriram, R.J. DePuit, T.M. Squires, E.M. Furst, J. Rheol. 53(2), 357 (2009)

    ADS  Google Scholar 

  61. R.N. Zia, Individual particle motion in colloids: microviscosity, microdiffusivity, and normal stresses. Ph.D. thesis, California Institute of Technology, 2011

    Google Scholar 

  62. J.W. Swan, R.N. Zia, Phys. Fluids. 25(8), 083303 (2013)

    ADS  Google Scholar 

  63. A.S. Khair, J.F. Brady, J. Rheol. 52(1), 165 (2008)

    ADS  Google Scholar 

  64. R.J. DePuit, T.M. Squires, J. Phys. Condens. Matter 24(46), 464106(1 (2012)

    Google Scholar 

  65. A.P. Minton, J. Pharm. Sci. 96(12), 3466 (2007)

    Google Scholar 

  66. M. Haw, Middle World: The Restless Heart of Matter and Life (Palgrave Macmillan, New York, 2006)

    Google Scholar 

  67. J.B. Perrin, Les Atomes (Librairies Félix Alcan, Paris, 1914)

    Google Scholar 

  68. G.K. Batchelor, J.T. Green, J. Fluid Mech. 56(2), 375 (1972)

    MATH  ADS  Google Scholar 

  69. G.K. Batchelor, J. Fluid Mech. 131, 155 (1983)

    MATH  ADS  Google Scholar 

  70. A. Caspi, R. Granek, M. Elbaum, Phys. Rev. Lett. 85(26), 5655 (2000)

    ADS  Google Scholar 

  71. K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (2000)

    Google Scholar 

  72. B.R. Daniels, B.C. Masi, D. Wirtz, Biophys. J. 90(12), 4712 (2006)

    ADS  Google Scholar 

  73. W.B. Russel, Ann. Rev. Fluid Mech. 13, 425 (1981)

    ADS  Google Scholar 

  74. R. Zwanzig, J. Stat. Phys. 9(3), 215 (1973)

    ADS  Google Scholar 

  75. R.d.L. Kronig, JOSA 12(6), 547 (1926)

    Google Scholar 

  76. H. H. Dramers, In La diffusion de la lumiere par les atoms, Atti del Congresso Internazionale dei Fisici, Vol. 2 (Zanichelli, Bologna, 1927), pp. 545–557

    Google Scholar 

  77. T. Pritz, J. Sound Vib. 279(3–5), 687 (2005)

    ADS  Google Scholar 

  78. J.F. Brady, Introduction to Suspension Dynamics (2007, unpublished)

    Google Scholar 

  79. G. Nägele, J. Bergenholtz, J. Chem. Phys. 108(23), 9893 (1998)

    ADS  Google Scholar 

  80. J.F. Brady, J. Fluid. Mech. 272, 109 (1994)

    MATH  MathSciNet  ADS  Google Scholar 

  81. J.M. Rallison, E.J. Hinch, J. Fluid Mech. 167, 131 (1986)

    ADS  Google Scholar 

  82. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  83. R. Zwanzig, J. Chem. Phys. 43(2), 714 (1965)

    MathSciNet  ADS  Google Scholar 

  84. G.K. Batchelor, J. Fluid Mech. 83, 97 (1977)

    MathSciNet  ADS  Google Scholar 

  85. Z. Cheng, J. Zhu, P. Chaikin, S.E. Phan, W.B. Russel, Phys. Rev. E 65(4), 041405 (2002)

    ADS  Google Scholar 

  86. A. Sierou, J.F. Brady, J. Fluid Mech. 448, 115 (2001)

    MATH  ADS  Google Scholar 

  87. J. Mewis, N.J. Wagner, Colloidal Suspension Rheology (Cambridge University Press, New York, 2012)

    Google Scholar 

  88. Y. Almog, H. Brenner, Phys. Fluids 9(1), 16 (1997)

    ADS  Google Scholar 

  89. D.R. Foss, J.F. Brady, J. Fluid Mech. 407, 167 (2000)

    MATH  ADS  Google Scholar 

  90. J.C. van der Werff, C.G. de Kruif, C. Blom, J. Mellema, Phys. Rev. A 39(2), 795 (1989)

    ADS  Google Scholar 

  91. F. Ziemann, J. Rädler, E. Sackmann, Biophys. J. 66(6), 2210 (1994)

    ADS  Google Scholar 

  92. M.T. Valentine, P.D. Kaplan, D. Thota, J.C. Crocker, T. Gisler, R.K. Prud’homme, M. Beck, D.A. Weitz, Phys. Rev. E 64(6), 061506 (2001)

    Google Scholar 

  93. B.R. Dasgupta, S.Y. Tee, J.C. Crocker, B.J. Frisken, D.A. Weitz, Phys. Rev. E 65(5), 051505 (2002)

    ADS  Google Scholar 

  94. J.H. van Zanten, S. Amin, A.A. Abdala, Macromolecules 37(10), 3874 (2004)

    ADS  Google Scholar 

  95. B.R. Dasgupta, Microrheology and dynamic light scattering studies of polymer solutions. Ph.D. thesis, Harvard University, 2004

    Google Scholar 

  96. B.R. Dasgupta, D.A. Weitz, Phys. Rev. E 71(2), 021504 (2005)

    ADS  Google Scholar 

  97. T.M. Squires, T.G. Mason, Ann. Rev. Fluid Mech. 42, 413 (2010)

    ADS  Google Scholar 

  98. A. Tuteja, M.E. Mackay, S. Narayanan, S. Asokan, M.S. Wong, Nano letters 7(5), 1276 (2007)

    Google Scholar 

  99. C.P. Brangwynne, G.H. Koenderink, F.C. MacKintosh, D.A. Weitz, Trends Cell Bio. 19(9), 423 (2009)

    Google Scholar 

  100. C.P. Brangwynne, G.H. Koenderink, F.C. Mackintosh, D.A. Weitz, J. Cell Bio. 183(4), 583 (2008)

    Google Scholar 

  101. F. Gittes, B. Schnurr, P.D. Olmsted, F.C. MacKintosh, C.F. Schmidt, Phys. Rev. Lett. 79(17), 3286 (1997)

    ADS  Google Scholar 

  102. I.C. Carpen, J.F. Brady, J. Rheol. 49(6), 1483 (2005)

    ADS  Google Scholar 

  103. J. Xu, V. Viasnoff, D. Wirtz, Rheol. Acta 37(4), 387 (1998)

    Google Scholar 

  104. F. Gadala-Maria, A. Acrivos, J. Rheol. 24(6), 799 (1980)

    ADS  Google Scholar 

  105. D. Leighton, A. Acrivos, J. Fluid Mech. 181, 415 (1987)

    ADS  Google Scholar 

  106. J.F. Brady, J.F. Morris, J. Fluid. Mech. 348, 103 (1997)

    MATH  ADS  Google Scholar 

  107. D.A. McQuarrie, Statistical Mechanics (Harper and Row, London, 1976)

    Google Scholar 

  108. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51(2), 635 (1969)

    ADS  Google Scholar 

  109. R. Hocquart, E.J. Hinch, J. Fluid Mech. 137, 217 (1983)

    MATH  ADS  Google Scholar 

  110. M.S. Green, J. Chem. Phys. 22(3), 398 (1954)

    MathSciNet  ADS  Google Scholar 

  111. R. Kubo, Rep. Prog. Phys. 29(1), 255 (1966)

    ADS  Google Scholar 

  112. D.M. Heyes, J.R. Melrose, J. Non-Newtonian Fluid Mech. 46(1), 1 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseanna N. Zia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zia, R.N., Brady, J.F. (2015). Theoretical Microrheology. In: Spagnolie, S. (eds) Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2065-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2065-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2064-8

  • Online ISBN: 978-1-4939-2065-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics