Skip to main content

Abstract

Animal models are valuable and necessary for the purpose of better understanding the mechanisms underlying disease processes and for the development and evaluation of novel therapeutic approaches. Mouse models of receptor tyrosine kinases have been among the first to be developed and were not only indispensable for profoundly improving our understanding of diseases like cancer but also for the development of novel methodologies and techniques that impact also on the way how patients and human diseases are analyzed today. The quest of compiling an up-to-date survey of all mouse models of receptor tyrosine kinases is all but impossible, first because of the mere amount of mouse models that have been generated during the last 40 years and second due to the fact that the speed novel mouse models are generated with has dramatically increased during the last years and it is even difficult to assess the number of novel mouse models that have been developed during the process of writing this book.

Here we have tried to give a comprehensive overview about the mouse models of receptor tyrosine kinases. Although these molecules cannot be fully investigated without considering them in the context of their ligands for time and space reasons we had to focus on the receptor tyrosine kinases themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webb TR et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009;9(3):331–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Roll JD, Reuther GW. ALK-activating homologous mutations in LTK induce cellular transformation. PLoS One. 2012;7(2):e31733.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Morris SW et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263(5151):1281–4.

    CAS  PubMed  Google Scholar 

  4. Bilsland JG et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology. 2008;33(3):685–700.

    CAS  PubMed  Google Scholar 

  5. Chiarle R et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101(5):1919–27.

    CAS  PubMed  Google Scholar 

  6. Wellstein A. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front Oncol. 2012;2:192.

    PubMed Central  PubMed  Google Scholar 

  7. Lasek AW et al. An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS One. 2011;6(7):e22636.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene. 2001;20(40):5623–37.

    CAS  PubMed  Google Scholar 

  9. Allouche M. ALK is a novel dependence receptor: potential implications in development and cancer. Cell Cycle. 2007;6(13):1533–8.

    CAS  PubMed  Google Scholar 

  10. Pulford K, Morris SW, Turturro F. Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol. 2004;199(3):330–58.

    CAS  PubMed  Google Scholar 

  11. Pulford K et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61(23):2939–53.

    CAS  PubMed  Google Scholar 

  12. Heukamp LC et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med. 2012;4(141):141ra91.

    PubMed  Google Scholar 

  13. Stanke M et al. Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development. 2006;133(1):141–50.

    CAS  PubMed  Google Scholar 

  14. Lindeberg J et al. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. Genesis. 2004;40(2):67–73.

    CAS  PubMed  Google Scholar 

  15. Giuriato S et al. Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALK-positive early B-cell lymphoma/leukemia. Blood. 2010;115(20):4061–70.

    CAS  PubMed  Google Scholar 

  16. Turner SD et al. Vav-promoter regulated oncogenic fusion protein NPM-ALK in transgenic mice causes B-cell lymphomas with hyperactive Jun kinase. Oncogene. 2003;22(49):7750–61.

    CAS  PubMed  Google Scholar 

  17. Turner SD et al. CD2 promoter regulated nucleophosmin-anaplastic lymphoma kinase in transgenic mice causes B lymphoid malignancy. Anticancer Res. 2006;26(5A):3275–9.

    CAS  PubMed  Google Scholar 

  18. Jager R et al. Mice transgenic for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Res. 2005;25(5):3191–6.

    PubMed  Google Scholar 

  19. Soda M et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A. 2008;105(50):19893–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Honda H et al. Heart-specific activation of LTK results in cardiac hypertrophy, cardiomyocyte degeneration and gene reprogramming in transgenic mice. Oncogene. 1999;18(26):3821–30.

    CAS  PubMed  Google Scholar 

  21. Linger RM et al. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008;100:35–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8(5):327–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Lemke G, Burstyn-Cohen T. TAM receptors and the clearance of apoptotic cells. Ann N Y Acad Sci. 2010;1209:23–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lu Q et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature. 1999;398(6729):723–8.

    CAS  PubMed  Google Scholar 

  25. Angelillo-Scherrer A et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J Clin Invest. 2005;115(2):237–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Zhu D et al. Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood. 2010;115(23):4963–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hoehn HJ et al. Axl-/- mice have delayed recovery and prolonged axonal damage following cuprizone toxicity. Brain Res. 2008;1240:1–11.

    CAS  PubMed  Google Scholar 

  28. Ruan GX, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 2012;31(7):1692–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Augustine KA et al. Noninsulin-dependent diabetes mellitus occurs in mice ectopically expressing the human Axl tyrosine kinase receptor. J Cell Physiol. 1999;181(3):433–47.

    CAS  PubMed  Google Scholar 

  30. Burstyn-Cohen T et al. Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron. 2012;76(6):1123–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Camenisch TD et al. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J Immunol. 1999;162(6):3498–503.

    CAS  PubMed  Google Scholar 

  32. Scott RS et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature. 2001;411(6834):207–11.

    CAS  PubMed  Google Scholar 

  33. Adams JM et al. Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene. 1999;18(38):5268–77.

    CAS  PubMed  Google Scholar 

  34. Keating AK et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene. 2006;25(45):6092–100.

    CAS  PubMed  Google Scholar 

  35. Maddox DM et al. An ENU-induced mutation in the Mertk gene (Mertknmf12) leads to a slow form of retinal degeneration. Invest Ophthalmol Vis Sci. 2011;52(7):4703–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Bauer T et al. Identification of Axl as a downstream effector of TGF-beta1 during Langerhans cell differentiation and epidermal homeostasis. J Exp Med. 2012;209(11):2033–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Caraux A et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat Immunol. 2006;7(7):747–54.

    CAS  PubMed  Google Scholar 

  38. Valiathan RR et al. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 2012;31(1–2):295–321.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Bargal R et al. Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. Am J Hum Genet. 2009;84(1):80–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Ali BR et al. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients. Hum Mol Genet. 2010;19(11):2239–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Vogel WF et al. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol. 2001;21(8):2906–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Labrador JP et al. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep. 2001;2(5):446–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kano K et al. A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Mol Endocrinol. 2008;22(8):1866–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Gross O et al. DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int. 2004;66(1):102–11.

    CAS  PubMed  Google Scholar 

  45. Curat CA, Vogel WF. Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. J Am Soc Nephrol. 2002;13(11):2648–56.

    CAS  PubMed  Google Scholar 

  46. Meyer zum Gottesberge AM et al. Inner ear defects and hearing loss in mice lacking the collagen receptor DDR1. Lab Invest. 2008;88(1):27–37.

    CAS  PubMed  Google Scholar 

  47. Olaso E et al. Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages. Am J Pathol. 2011;179(6):2894–904.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Olaso E et al. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest. 2001;108(9):1369–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Badiola I et al. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut. 2012;61(10):1465–72.

    PubMed  Google Scholar 

  50. Kano K et al. Discoidin domain receptor 2 (DDR2) is required for maintenance of spermatogenesis in male mice. Mol Reprod Dev. 2010;77(1):29–37.

    CAS  PubMed  Google Scholar 

  51. Matsumura H et al. Transcriptome analysis reveals an unexpected role of a collagen tyrosine kinase receptor gene, Ddr2, as a regulator of ovarian function. Physiol Genomics. 2009;39(2):120–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Black J. Low birth weight dwarfism. Arch Dis Child. 1961;36:633–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Sibilia M, Wagner EF. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science. 1995;269(5221):234–8.

    CAS  PubMed  Google Scholar 

  54. Threadgill DW et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995;269(5221):230–4.

    CAS  PubMed  Google Scholar 

  55. Miettinen PJ et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 1995;376(6538):337–41.

    CAS  PubMed  Google Scholar 

  56. Natarajan A, Wagner B, Sibilia M. The EGF receptor is required for efficient liver regeneration. Proc Natl Acad Sci U S A. 2007;104(43):17081–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Lee TC, Threadgill DW. Generation and validation of mice carrying a conditional allele of the epidermal growth factor receptor. Genesis. 2009;47(2):85–92.

    CAS  PubMed  Google Scholar 

  58. Dietrich P et al. Conditional mutagenesis in mice with heat shock promoter-driven cre transgenes. Mamm Genome. 2000;11(3):196–205.

    CAS  PubMed  Google Scholar 

  59. Sibilia M et al. Mice humanised for the EGF receptor display hypomorphic phenotypes in skin, bone and heart. Development. 2003;130(19):4515–25.

    CAS  PubMed  Google Scholar 

  60. Luetteke NC et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 1994;8(4):399–413.

    CAS  PubMed  Google Scholar 

  61. Lee D et al. Wa5 is a novel ENU-induced antimorphic allele of the epidermal growth factor receptor. Mamm Genome. 2004;15(7):525–36.

    CAS  PubMed  Google Scholar 

  62. Fitch KR et al. Genetics of dark skin in mice. Genes Dev. 2003;17(2):214–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Du X et al. Velvet, a dominant Egfr mutation that causes wavy hair and defective eyelid development in mice. Genetics. 2004;166(1):331–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Hansen LA et al. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. Am J Pathol. 1997;150(6):1959–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Hom YK et al. Uterine and vaginal organ growth requires epidermal growth factor receptor signaling from stroma. Endocrinology. 1998;139(3):913–21.

    CAS  PubMed  Google Scholar 

  66. Sibilia M et al. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 1998;17(3):719–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wagner B et al. Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes. EMBO J. 2006;25(4):752–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Viti J et al. Epidermal growth factor receptors control competence to interpret leukemia inhibitory factor as an astrocyte inducer in developing cortex. J Neurosci. 2003;23(8):3385–93.

    CAS  PubMed  Google Scholar 

  69. Maklad A et al. The EGFR is required for proper innervation to the skin. J Invest Dermatol. 2009;129(3):690–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Tallquist MD, Soriano P. Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis. 2000;26(2):113–5.

    CAS  PubMed  Google Scholar 

  71. Kellendonk C et al. Hepatocyte-specific expression of Cre recombinase. Genesis. 2000;26(2):151–3.

    CAS  PubMed  Google Scholar 

  72. Kuhn R et al. Inducible gene targeting in mice. Science. 1995;269(5229):1427–9.

    CAS  PubMed  Google Scholar 

  73. Murthy A et al. Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice. J Clin Invest. 2010;120(8):2731–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Indra AK et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 1999;27(22):4324–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Lichtenberger BM et al. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell. 2010;140(2):268–79.

    CAS  PubMed  Google Scholar 

  76. Eberl M et al. Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med. 2012;4(3):218–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Tarutani M et al. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc Natl Acad Sci U S A. 1997;94(14):7400–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Lichtenberger BM et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation. Sci Transl Med. 2013;5(199):199ra111.

    PubMed  Google Scholar 

  79. Guerra C et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302.

    CAS  PubMed  Google Scholar 

  80. Navas C et al. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22(3):318–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kawaguchi Y et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32(1):128–34.

    CAS  PubMed  Google Scholar 

  82. Hingorani SR et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.

    CAS  PubMed  Google Scholar 

  83. Ardito CM et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22(3):304–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Holtwick R et al. Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci U S A. 2002;99(10):7142–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Schreier B et al. Consequences of epidermal growth factor receptor (ErbB1) loss for vascular smooth muscle cells from mice with targeted deletion of ErbB1. Arterioscler Thromb Vasc Biol. 2011;31(7):1643–52.

    CAS  PubMed  Google Scholar 

  86. Schreier B et al. Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy. Hypertension. 2013;61(2):333–40.

    CAS  PubMed  Google Scholar 

  87. Zaiss DM et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity. 2013;38(2):275–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lakso M et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A. 1996;93(12):5860–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Dassule HR et al. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000;127(22):4775–85.

    CAS  PubMed  Google Scholar 

  90. Bichsel KJ et al. Role for the epidermal growth factor receptor in chemotherapy-induced alopecia. PLoS One. 2013;8(7):e69368.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Franzke CW et al. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J Exp Med. 2012;209(6):1105–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Ramirez A et al. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis. 2004;39(1):52–7.

    CAS  PubMed  Google Scholar 

  93. Mascia F et al. EGFR regulates the expression of keratinocyte-derived granulocyte/macrophage colony-stimulating factor in vitro and in vivo. J Invest Dermatol. 2010;130(3):682–93.

    CAS  PubMed  Google Scholar 

  94. Mascia F et al. Genetic ablation of epidermal EGFR reveals the dynamic origin of adverse effects of anti-EGFR therapy. Sci Transl Med. 2013;5(199):199ra110.

    PubMed  Google Scholar 

  95. Eremina V et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Shigehara T et al. Inducible podocyte-specific gene expression in transgenic mice. J Am Soc Nephrol. 2003;14(8):1998–2003.

    CAS  PubMed  Google Scholar 

  97. Bollee G et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med. 2011;17(10):1242–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Iwano M et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Chen J, Chen JK, Harris RC. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int. 2012;82(1):45–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Zhao H et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol. 2004;276(2):403–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Zhang Z et al. Targeted inactivation of EGF receptor inhibits renal collecting duct development and function. J Am Soc Nephrol. 2010;21(4):573–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Liu F et al. Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol. 2004;48(7):645–53.

    CAS  PubMed  Google Scholar 

  103. Zhang X et al. Epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo. J Bone Miner Res. 2011;26(5):1022–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Ovchinnikov DA et al. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis. 2000;26(2):145–6.

    CAS  PubMed  Google Scholar 

  105. Zhang X et al. The critical role of the epidermal growth factor receptor in endochondral ossification. J Bone Miner Res. 2011;26(11):2622–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Zhang X et al. Epidermal growth factor receptor (EGFR) signaling regulates epiphyseal cartilage development through beta-catenin-dependent and -independent pathways. J Biol Chem. 2013;288(45):32229–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Clausen BE et al. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8(4):265–77.

    CAS  PubMed  Google Scholar 

  108. Lu N et al. Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J Immunol. 2014;192(3):1013–23.

    CAS  PubMed  Google Scholar 

  109. Chen B et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet. 2000;24(3):296–9.

    CAS  PubMed  Google Scholar 

  110. Barrick CJ et al. Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice. Am J Physiol Heart Circ Physiol. 2009;297(1):H65–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sibilia M et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell. 2000;102(2):211–20.

    CAS  PubMed  Google Scholar 

  112. Egger B et al. Mice harboring a defective epidermal growth factor receptor (waved-2) have an increased susceptibility to acute dextran sulfate-induced colitis. Scand J Gastroenterol. 2000;35(11):1181–7.

    CAS  PubMed  Google Scholar 

  113. Roberts RB et al. Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci U S A. 2002;99(3):1521–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Dahlhoff M et al. Decreased incidence of papillomas in mice with impaired EGFR function during multi-stage skin carcinogenesis. Exp Dermatol. 2011;20(3):290–3.

    PubMed  Google Scholar 

  115. Brandl K et al. MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands. Proc Natl Acad Sci U S A. 2010;107(46):19967–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Murillas R et al. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure. EMBO J. 1995;14(21):5216–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Xie W et al. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol. 1997;11(12):1766–81.

    CAS  PubMed  Google Scholar 

  118. Roh M et al. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol. 2001;15(4):600–13.

    CAS  PubMed  Google Scholar 

  119. Ling BC et al. Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell. 2005;7(1):65–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by beta cell regeneration. J Clin Invest. 2007;117(9):2553–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Politi K et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 2006;20(11):1496–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Hakonen E et al. In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia. 2014;57(5):970–9.

    CAS  PubMed  Google Scholar 

  123. Tichelaar JW, Lu W, Whitsett JA. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem. 2000;275(16):11858–64.

    CAS  PubMed  Google Scholar 

  124. Korfhagen TR et al. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice. Proc Natl Acad Sci U S A. 1990;87(16):6122–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Ohashi K et al. Induction of lung adenocarcinoma in transgenic mice expressing activated EGFR driven by the SP-C promoter. Cancer Sci. 2008;99(9):1747–53.

    CAS  PubMed  Google Scholar 

  126. Ohashi K et al. Chemopreventive effects of gefitinib on nonsmoking-related lung tumorigenesis in activating epidermal growth factor receptor transgenic mice. Cancer Res. 2009;69(17):7088–95.

    CAS  PubMed  Google Scholar 

  127. Li D et al. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell. 2007;12(1):81–93.

    CAS  PubMed  Google Scholar 

  128. Ji H et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2006;103(20):7817–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Zhou W et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462(7276):1070–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Ding H et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res. 2003;63(5):1106–13.

    CAS  PubMed  Google Scholar 

  131. Zhu H et al. Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci U S A. 2009;106(8):2712–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Holland EC et al. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 1998;12(23):3675–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378(6555):386–90.

    CAS  PubMed  Google Scholar 

  134. Erickson SL et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development. 1997;124(24):4999–5011.

    CAS  PubMed  Google Scholar 

  135. Lee KF et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995;378(6555):394–8.

    CAS  PubMed  Google Scholar 

  136. Park SK et al. The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J Cell Biol. 2001;154(6):1245–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Britsch S et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 1998;12(12):1825–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Garratt AN et al. A dual role of erbB2 in myelination and in expansion of the schwann cell precursor pool. J Cell Biol. 2000;148(5):1035–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Crone SA et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8(5):459–65.

    CAS  PubMed  Google Scholar 

  140. Leu M et al. Erbb2 regulates neuromuscular synapse formation and is essential for muscle spindle development. Development. 2003;130(11):2291–301.

    CAS  PubMed  Google Scholar 

  141. Andrechek ER et al. ErbB2 is required for muscle spindle and myoblast cell survival. Mol Cell Biol. 2002;22(13):4714–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Chan R et al. The catalytic activity of the ErbB-2 receptor tyrosine kinase is essential for embryonic development. Mol Cell Biol. 2002;22(4):1073–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Chan R et al. Modulation of Erbb2 signaling during development: a threshold level of Erbb2 signaling is required for development. Development. 2004;131(22):5551–60.

    CAS  PubMed  Google Scholar 

  144. Andrechek ER et al. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc Natl Acad Sci U S A. 2000;97(7):3444–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Lin W et al. Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Natl Acad Sci U S A. 2000;97(3):1299–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Schwenk F, Baron U, Rajewsky K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 1995;23(24):5080–1.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Voiculescu O, Charnay P, Schneider-Maunoury S. Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis. 2000;26(2):123–6.

    CAS  PubMed  Google Scholar 

  148. Chen J, Kubalak SW, Chien KR. Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development. 1998;125(10):1943–9.

    CAS  PubMed  Google Scholar 

  149. Wang J et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet. 1999;21(1):133–7.

    CAS  PubMed  Google Scholar 

  150. Andrechek ER et al. Germ-line expression of an oncogenic erbB2 allele confers resistance to erbB2-induced mammary tumorigenesis. Proc Natl Acad Sci U S A. 2004;101(14):4984–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Huang AL et al. Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell. 1981;27(2 Pt 1):245–55.

    CAS  PubMed  Google Scholar 

  152. Muller WJ et al. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988;54(1):105–15.

    CAS  PubMed  Google Scholar 

  153. Muller WJ et al. Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol Cell Biol. 1996;16(10):5726–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Guy CT et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992;89(22):10578–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Bouchard L et al. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell. 1989;57(6):931–6.

    CAS  PubMed  Google Scholar 

  156. Boggio K et al. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J Exp Med. 1998;188(3):589–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Lucchini F et al. Early and multifocal tumors in breast, salivary, harderian and epididymal tissues developed in MMTY-Neu transgenic mice. Cancer Lett. 1992;64(3):203–9.

    CAS  PubMed  Google Scholar 

  158. Dankort D et al. Grb2 and Shc adapter proteins play distinct roles in Neu (ErbB-2)-induced mammary tumorigenesis: implications for human breast cancer. Mol Cell Biol. 2001;21(5):1540–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Oshima RG et al. Angiogenic acceleration of Neu induced mammary tumor progression and metastasis. Cancer Res. 2004;64(1):169–79.

    CAS  PubMed  Google Scholar 

  160. Weinstein EJ, Leder P. The extracellular region of heregulin is sufficient to promote mammary gland proliferation and tumorigenesis but not apoptosis. Cancer Res. 2000;60(14):3856–61.

    CAS  PubMed  Google Scholar 

  161. Bol D et al. Severe follicular hyperplasia and spontaneous papilloma formation in transgenic mice expressing the neu oncogene under the control of the bovine keratin 5 promoter. Mol Carcinog. 1998;21(1):2–12.

    CAS  PubMed  Google Scholar 

  162. Kiguchi K et al. Constitutive expression of erbB2 in epidermis of transgenic mice results in epidermal hyperproliferation and spontaneous skin tumor development. Oncogene. 2000;19(37):4243–54.

    CAS  PubMed  Google Scholar 

  163. Xie W et al. Targeted expression of activated erbB-2 to the epidermis of transgenic mice elicits striking developmental abnormalities in the epidermis and hair follicles. Cell Growth Differ. 1998;9(4):313–25.

    CAS  PubMed  Google Scholar 

  164. Xie W et al. Conditional expression of the ErbB2 oncogene elicits reversible hyperplasia in stratified epithelia and up-regulation of TGFalpha expression in transgenic mice. Oncogene. 1999;18(24):3593–607.

    CAS  PubMed  Google Scholar 

  165. Piechocki MP et al. Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol. 2003;171(11):5787–94.

    CAS  PubMed  Google Scholar 

  166. Martin JF, Olson EN. Identification of a prx1 limb enhancer. Genesis. 2000;26(4):225–9.

    CAS  PubMed  Google Scholar 

  167. Fisher MC et al. Requirement for ErbB2/ErbB signaling in developing cartilage and bone. Dev Growth Differ. 2007;49(6):503–13.

    CAS  PubMed  Google Scholar 

  168. Sysa-Shah P et al. Cardiac-specific over-expression of epidermal growth factor receptor 2 (ErbB2) induces pro-survival pathways and hypertrophic cardiomyopathy in mice. PLoS One. 2012;7(8):e42805.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Siegel PM et al. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J. 1999;18(8):2149–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Riethmacher D et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature. 1997;389(6652):725–30.

    CAS  PubMed  Google Scholar 

  171. Qu S et al. Gene targeting of ErbB3 using a Cre-mediated unidirectional DNA inversion strategy. Genesis. 2006;44(10):477–86.

    CAS  PubMed  Google Scholar 

  172. Lee D et al. Tumor-specific apoptosis caused by deletion of the ERBB3 pseudo-kinase in mouse intestinal epithelium. J Clin Invest. 2009;119(9):2702–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Brinkmann BG et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron. 2008;59(4):581–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Lahlou H et al. Uncoupling of PI3K from ErbB3 impairs mammary gland development but does not impact on ErbB2-induced mammary tumorigenesis. Cancer Res. 2012;72(12):3080–90.

    CAS  PubMed  Google Scholar 

  175. Buac K et al. A Sox10 expression screen identifies an amino acid essential for Erbb3 function. PLoS Genet. 2008;4(9):e1000177.

    PubMed Central  PubMed  Google Scholar 

  176. Vaught DB et al. HER3 is required for HER2-induced preneoplastic changes to the breast epithelium and tumor formation. Cancer Res. 2012;72(10):2672–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Balko JM et al. The receptor tyrosine kinase ErbB3 maintains the balance between luminal and basal breast epithelium. Proc Natl Acad Sci U S A. 2012;109(1):221–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Madison BB et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem. 2002;277(36):33275–83.

    CAS  PubMed  Google Scholar 

  179. Lappe-Siefke C et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33(3):366–74.

    CAS  PubMed  Google Scholar 

  180. Gassmann M et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 1995;378(6555):390–4.

    CAS  PubMed  Google Scholar 

  181. Golub MS, Germann SL, Lloyd KC. Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav Brain Res. 2004;153(1):159–70.

    CAS  PubMed  Google Scholar 

  182. Jackson-Fisher AJ et al. Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4. Oncogene. 2006;25(41):5664–72.

    CAS  PubMed  Google Scholar 

  183. Garcia-Rivello H et al. Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. Am J Physiol Heart Circ Physiol. 2005;289(3):H1153–60.

    CAS  PubMed  Google Scholar 

  184. Veikkolainen V et al. ErbB4 modulates tubular cell polarity and lumen diameter during kidney development. J Am Soc Nephrol. 2012;23(1):112–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Madisen L et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13(1):133–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Tidcombe H et al. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci U S A. 2003;100(14):8281–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Golding JP et al. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat Cell Biol. 2000;2(2):103–9.

    CAS  PubMed  Google Scholar 

  188. Zimmerman L et al. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron. 1994;12(1):11–24.

    CAS  PubMed  Google Scholar 

  189. Long W et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development. 2003;130(21):5257–68.

    CAS  PubMed  Google Scholar 

  190. Bouchard M, Souabni A, Busslinger M. Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis. 2004;38(3):105–9.

    CAS  PubMed  Google Scholar 

  191. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell. 1997;90(3): 403–4.

    Google Scholar 

  192. Gale NW et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron. 1996;17(1):9–19.

    CAS  PubMed  Google Scholar 

  193. Henkemeyer M et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell. 1996;86(1):35–46.

    CAS  PubMed  Google Scholar 

  194. Drescher U et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell. 1995;82(3):359–70.

    CAS  PubMed  Google Scholar 

  195. Iwasato T et al. Rac-GAP alpha-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell. 2007;130(4):742–53.

    CAS  PubMed  Google Scholar 

  196. Shamah SM et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell. 2001;105(2):233–44.

    CAS  PubMed  Google Scholar 

  197. Foo SS et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell. 2006;124(1):161–73.

    CAS  PubMed  Google Scholar 

  198. Gerety SS et al. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4(3):403–14.

    CAS  PubMed  Google Scholar 

  199. Kadison SR et al. EphB receptors and ephrin-B3 regulate axon guidance at the ventral midline of the embryonic mouse spinal cord. J Neurosci. 2006;26(35):8909–14.

    CAS  PubMed  Google Scholar 

  200. Brantley-Sieders DM et al. Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J. 2005;19(13):1884–6.

    CAS  PubMed  Google Scholar 

  201. Brantley-Sieders DM et al. Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res. 2006;66(21):10315–24.

    CAS  PubMed  Google Scholar 

  202. Pasquale EB. The Eph family of receptors. Curr Opin Cell Biol. 1997;9(5):608–15.

    CAS  PubMed  Google Scholar 

  203. Duffy SL et al. Generation and characterization of EphA1 receptor tyrosine kinase reporter knockout mice. Genesis. 2008;46(10):553–61.

    CAS  PubMed  Google Scholar 

  204. Chen J et al. Germ-line inactivation of the murine Eck receptor tyrosine kinase by gene trap retroviral insertion. Oncogene. 1996;12(5):979–88.

    CAS  PubMed  Google Scholar 

  205. Brantley-Sieders DM et al. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci. 2004;117(Pt 10):2037–49.

    CAS  PubMed  Google Scholar 

  206. Guo H et al. Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res. 2006;66(14):7050–8.

    CAS  PubMed  Google Scholar 

  207. Jun G et al. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet. 2009;5(7):e1000584.

    PubMed Central  PubMed  Google Scholar 

  208. Okazaki T et al. Capillary defects and exaggerated inflammatory response in the airways of EphA2-deficient mice. Am J Pathol. 2009;174(6):2388–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Day BW et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell. 2013;23(2):238–48.

    CAS  PubMed  Google Scholar 

  210. Vaidya A et al. EphA3 null mutants do not demonstrate motor axon guidance defects. Mol Cell Biol. 2003;23(22):8092–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Egea J et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron. 2005;47(4):515–28.

    CAS  PubMed  Google Scholar 

  212. Orioli D et al. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 1996;15(22):6035–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Dottori M et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A. 1998;95(22):13248–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Kullander K et al. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron. 2001;29(1):73–84.

    CAS  PubMed  Google Scholar 

  215. Helmbacher F et al. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development. 2000;127(15):3313–24.

    CAS  PubMed  Google Scholar 

  216. Leighton PA et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature. 2001;410(6825):174–9.

    CAS  PubMed  Google Scholar 

  217. Grunwald IC et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci. 2004;7(1):33–40.

    CAS  PubMed  Google Scholar 

  218. Herrmann JE et al. Generation of an EphA4 conditional allele in mice. Genesis. 2010;48(2):101–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Filosa A et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci. 2009;12(10):1285–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Hanell A et al. Functional and histological outcome after focal traumatic brain injury is not improved in conditional EphA4 knockout mice. J Neurotrauma. 2012;29(17):2660–71.

    PubMed  Google Scholar 

  221. Dudanova I et al. Genetic evidence for a contribution of EphA:ephrinA reverse signaling to motor axon guidance. J Neurosci. 2012;32(15):5209–15.

    CAS  PubMed  Google Scholar 

  222. Kullander K et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 2001;15(7):877–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Feldheim DA et al. Loss-of-function analysis of EphA receptors in retinotectal mapping. J Neurosci. 2004;24(10):2542–50.

    CAS  PubMed  Google Scholar 

  224. Savelieva KV et al. Learning and memory impairment in Eph receptor A6 knockout mice. Neurosci Lett. 2008;438(2):205–9.

    CAS  PubMed  Google Scholar 

  225. Rashid T et al. Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron. 2005;47(1):57–69.

    CAS  PubMed  Google Scholar 

  226. Park S, Frisen J, Barbacid M. Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein kinase receptors. EMBO J. 1997;16(11):3106–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Aasheim HC et al. Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis. Biochim Biophys Acta. 2005;1723(1–3):1–7.

    CAS  PubMed  Google Scholar 

  228. Williams SE et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron. 2003;39(6):919–35.

    CAS  PubMed  Google Scholar 

  229. Chenaux G, Henkemeyer M. Forward signaling by EphB1/EphB2 interacting with ephrin-B ligands at the optic chiasm is required to form the ipsilateral projection. Eur J Neurosci. 2011;34(10):1620–33.

    PubMed Central  PubMed  Google Scholar 

  230. Thakar S, Chenaux G, Henkemeyer M. Critical roles for EphB and ephrin-B bidirectional signalling in retinocollicular mapping. Nat Commun. 2011;2:431.

    PubMed Central  PubMed  Google Scholar 

  231. Cowan CA et al. EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron. 2000;26(2):417–30.

    CAS  PubMed  Google Scholar 

  232. Genander M et al. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell. 2009;139(4):679–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Holmberg J et al. EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell. 2006;125(6):1151–63.

    CAS  PubMed  Google Scholar 

  234. Xu NJ, Henkemeyer M. Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning. Nat Neurosci. 2009;12(3):268–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Freywald A, Sharfe N, Roifman CM. The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J Biol Chem. 2002;277(6):3823–8.

    CAS  PubMed  Google Scholar 

  236. Gurniak CB, Berg LJ. A new member of the Eph family of receptors that lacks protein tyrosine kinase activity. Oncogene. 1996;13(4):777–86.

    CAS  PubMed  Google Scholar 

  237. Luo H et al. EphB6-null mutation results in compromised T cell function. J Clin Invest. 2004;114(12):1762–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Shimoyama M et al. Developmental expression of EphB6 in the thymus: lessons from EphB6 knockout mice. Biochem Biophys Res Commun. 2002;298(1):87–94.

    CAS  PubMed  Google Scholar 

  239. Wang L et al. Anatomical coupling of sensory and motor nerve trajectory via axon tracking. Neuron. 2011;71(2):263–77.

    CAS  PubMed  Google Scholar 

  240. Gallarda BW et al. Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling. Science. 2008;320(5873):233–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Chen L, Deng CX. Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci. 2005;10:1961–76.

    CAS  PubMed  Google Scholar 

  242. Hou JZ et al. Fibroblast growth factor receptors from liver vary in three structural domains. Science. 1991;251(4994):665–8.

    CAS  PubMed  Google Scholar 

  243. Du X et al. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol. 2012;227(12):3731–43.

    CAS  PubMed  Google Scholar 

  244. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.

    CAS  PubMed  Google Scholar 

  245. Deng CX et al. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev. 1994;8(24):3045–57.

    CAS  PubMed  Google Scholar 

  246. Deng C et al. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev Biol. 1997;185(1):42–54.

    CAS  PubMed  Google Scholar 

  247. Ciruna B, Rossant J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell. 2001;1(1):37–49.

    CAS  PubMed  Google Scholar 

  248. Yamaguchi TP et al. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 1994;8(24):3032–44.

    CAS  PubMed  Google Scholar 

  249. Partanen J, Schwartz L, Rossant J. Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev. 1998;12(15):2332–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Trokovic R et al. FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J. 2003;22(8):1811–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Hebert JM, McConnell SK. Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol. 2000;222(2):296–306.

    CAS  PubMed  Google Scholar 

  252. Pirvola U et al. FGFR1 is required for the development of the auditory sensory epithelium. Neuron. 2002;35(4):671–80.

    CAS  PubMed  Google Scholar 

  253. Hebert JM et al. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development. 2003;130(6):1101–11.

    CAS  PubMed  Google Scholar 

  254. Dacquin R et al. Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev Dyn. 2002;224(2):245–51.

    CAS  PubMed  Google Scholar 

  255. Jacob AL et al. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol. 2006;296(2):315–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Zhuo L et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis. 2001;31(2):85–94.

    CAS  PubMed  Google Scholar 

  257. Fagel DM et al. Fgfr1 is required for cortical regeneration and repair after perinatal hypoxia. J Neurosci. 2009;29(4):1202–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Ohkubo Y et al. Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J Neurosci. 2004;24(27):6057–69.

    CAS  PubMed  Google Scholar 

  259. Xu X et al. Generation of Fgfr1 conditional knockout mice. Genesis. 2002;32(2):85–6.

    PubMed  Google Scholar 

  260. Nelson DK, Williams T. Frontonasal process-specific disruption of AP-2alpha results in postnatal midfacial hypoplasia, vascular anomalies, and nasal cavity defects. Dev Biol. 2004;267(1):72–92.

    CAS  PubMed  Google Scholar 

  261. Li C et al. FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. Development. 2005;132(21):4755–64.

    CAS  PubMed  Google Scholar 

  262. Lowe LA, Yamada S, Kuehn MR. HoxB6-Cre transgenic mice express Cre recombinase in extra-embryonic mesoderm, in lateral plate and limb mesoderm and at the midbrain/hindbrain junction. Genesis. 2000;26(2):118–20.

    CAS  PubMed  Google Scholar 

  263. Niwa Y et al. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev Cell. 2007;13(2):298–304.

    CAS  PubMed  Google Scholar 

  264. Wahl MB et al. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development. 2007;134(22):4033–41.

    CAS  PubMed  Google Scholar 

  265. Chen M et al. Generation of a transgenic mouse model with chondrocyte-specific and tamoxifen-inducible expression of Cre recombinase. Genesis. 2007;45(1):44–50.

    PubMed Central  PubMed  Google Scholar 

  266. Weng T et al. Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice. Arthritis Rheum. 2012;64(12):3982–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Werner S et al. Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J. 1993;12(7):2635–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Jackson D et al. Fibroblast growth factor receptor signalling has a role in lobuloalveolar development of the mammary gland. J Cell Sci. 1997;110(Pt 11):1261–8.

    CAS  PubMed  Google Scholar 

  269. Saffell JL et al. Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron. 1997;18(2):231–42.

    CAS  PubMed  Google Scholar 

  270. Robinson ML et al. Expression of a truncated FGF receptor results in defective lens development in transgenic mice. Development. 1995;121(12):3959–67.

    CAS  PubMed  Google Scholar 

  271. Peng H et al. Novel nuclear signaling pathway mediates activation of fibroblast growth factor-2 gene by type 1 and type 2 angiotensin II receptors. Mol Biol Cell. 2001;12(2):449–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Banerjee SA et al. 5' flanking sequences of the rat tyrosine hydroxylase gene target accurate tissue-specific, developmental, and transsynaptic expression in transgenic mice. J Neurosci. 1992;12(11):4460–7.

    CAS  PubMed  Google Scholar 

  273. Klejbor I et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons - inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem. 2006;97(5):1243–58.

    CAS  PubMed  Google Scholar 

  274. Klejbor I et al. Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis. Schizophr Res. 2009;113(2–3):308–21.

    PubMed  Google Scholar 

  275. Arman E et al. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A. 1998;95(9):5082–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Nagy A et al. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A. 1993;90(18):8424–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  277. Arman E et al. Fgfr2 is required for limb outgrowth and lung-branching morphogenesis. Proc Natl Acad Sci U S A. 1999;96(21):11895–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  278. Xu X et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development. 1998;125(4):753–65.

    CAS  PubMed  Google Scholar 

  279. Yu K et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development. 2003;130(13):3063–74.

    CAS  PubMed  Google Scholar 

  280. Walker KA et al. Deletion of fibroblast growth factor receptor 2 from the peri-wolffian duct stroma leads to ureteric induction abnormalities and vesicoureteral reflux. PLoS One. 2013;8(2):e56062.

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Sun X et al. Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nat Genet. 2000;25(1):83–6.

    CAS  PubMed  Google Scholar 

  282. Mukhopadhyay A et al. Negative regulation of Shh levels by Kras and Fgfr2 during hair follicle development. Dev Biol. 2013;373(2):373–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Kaga Y et al. Mice with conditional inactivation of fibroblast growth factor receptor-2 signaling in oligodendrocytes have normal myelin but display dramatic hyperactivity when combined with Cnp1 inactivation. J Neurosci. 2006;26(47):12339–50.

    CAS  PubMed  Google Scholar 

  284. Okubo T et al. Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development. 2005;132(6):1363–74.

    CAS  PubMed  Google Scholar 

  285. Abler LL, Mansour SL, Sun X. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn. 2009;238(8):1999–2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Lin Y et al. Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis. Development. 2007;134(4):723–34.

    CAS  PubMed  Google Scholar 

  287. Chi CL et al. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development. 2003;130(12):2633–44.

    CAS  PubMed  Google Scholar 

  288. Blak AA et al. Fgfr2 and Fgfr3 are not required for patterning and maintenance of the midbrain and anterior hindbrain. Dev Biol. 2007;303(1):231–43.

    CAS  PubMed  Google Scholar 

  289. Eswarakumar VP et al. Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci U S A. 2006;103(49):18603–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  290. De Moerlooze L et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.

    PubMed  Google Scholar 

  291. Pirvola U et al. FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. J Neurosci. 2000;20(16):6125–34.

    CAS  PubMed  Google Scholar 

  292. Ramirez A et al. Sequences 5' of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation. 1994;58(1):53–64.

    CAS  PubMed  Google Scholar 

  293. Grose R et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J. 2007;26(5):1268–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Revest JM et al. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol. 2001;231(1):47–62.

    CAS  PubMed  Google Scholar 

  295. Peters K et al. Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J. 1994;13(14):3296–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  296. Werner S et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science. 1994;266(5186):819–22.

    CAS  PubMed  Google Scholar 

  297. Foster BA et al. Enforced expression of FGF-7 promotes epithelial hyperplasia whereas a dominant negative FGFR2iiib promotes the emergence of neuroendocrine phenotype in prostate glands of transgenic mice. Differentiation. 2002;70(9–10):624–32.

    CAS  PubMed  Google Scholar 

  298. Wang Y et al. p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest. 2012;122(6):2153–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Eswarakumar VP et al. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development. 2002;129(16):3783–93.

    CAS  PubMed  Google Scholar 

  300. Suzuki H et al. Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts. J Cell Physiol. 2012;227(9):3267–77.

    CAS  PubMed  Google Scholar 

  301. Wang Y et al. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice. BMC Dev Biol. 2010;10:22.

    PubMed Central  PubMed  Google Scholar 

  302. Hajihosseini MK et al. A splicing switch and gain-of-function mutation in FgfR2-IIIc hemizygotes causes Apert/Pfeiffer-syndrome-like phenotypes. Proc Natl Acad Sci U S A. 2001;98(7):3855–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Celli G et al. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J. 1998;17(6):1642–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  304. Matsunaga S et al. Endothelium-targeted overexpression of constitutively active FGF receptor induces cardioprotection in mice myocardial infarction. J Mol Cell Cardiol. 2009;46(5):663–73.

    CAS  PubMed  Google Scholar 

  305. Shigematsu A et al. Signaling from fibroblast growth factor receptor 2 in immature hematopoietic cells facilitates donor hematopoiesis after intra-bone marrow-bone marrow transplantation. Stem Cells Dev. 2010;19(11):1679–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  306. Somarelli JA et al. Fluorescence-based alternative splicing reporters for the study of epithelial plasticity in vivo. RNA. 2013;19(1):116–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  307. Colvin JS et al. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.

    CAS  PubMed  Google Scholar 

  308. Deng C et al. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911–21.

    CAS  PubMed  Google Scholar 

  309. Arnaud-Dabernat S et al. FGFR3 is a negative regulator of the expansion of pancreatic epithelial cells. Diabetes. 2007;56(1):96–106.

    CAS  PubMed  Google Scholar 

  310. Carli A et al. FGF18 augments osseointegration of intra-medullary implants in osteopenic FGFR3(-/-) mice. Eur Cell Mater. 2012;24:107–16. discussion 116–7.

    CAS  PubMed  Google Scholar 

  311. Moldrich RX et al. Fgfr3 regulates development of the caudal telencephalon. Dev Dyn. 2011;240(6):1586–99.

    CAS  PubMed  Google Scholar 

  312. Su N et al. Generation of Fgfr3 conditional knockout mice. Int J Biol Sci. 2010;6(4):327–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  313. Wang JM et al. [Gly374Arg mutation in Fgfr3 causes achondroplasia in mice]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2004;21(6):537–41.

    CAS  PubMed  Google Scholar 

  314. Wang Y et al. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A. 1999;96(8):4455–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Murakami S et al. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 2004;18(3):290–305.

    CAS  PubMed Central  PubMed  Google Scholar 

  316. Chen L et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest. 1999;104(11):1517–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  317. Eswarakumar VP, Schlessinger J. Skeletal overgrowth is mediated by deficiency in a specific isoform of fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A. 2007;104(10):3937–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  318. Chen J et al. Constitutively activated FGFR3 mutants signal through PLCgamma-dependent and -independent pathways for hematopoietic transformation. Blood. 2005;106(1):328–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  319. Weinstein M et al. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development. 1998;125(18):3615–23.

    CAS  PubMed  Google Scholar 

  320. Yu C et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem. 2000;275(20):15482–9.

    CAS  PubMed  Google Scholar 

  321. French DM et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One. 2012;7(5):e36713.

    CAS  PubMed Central  PubMed  Google Scholar 

  322. Gutierrez A et al. Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4. Arterioscler Thromb Vasc Biol. 2006;26(2):301–6.

    CAS  PubMed  Google Scholar 

  323. Yu C et al. Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice. Am J Pathol. 2002;161(6):2003–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  324. Sims-Lucas S et al. Independent roles of Fgfr2 and Frs2alpha in ureteric epithelium. Development. 2011;138(7):1275–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Chen J et al. Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem. 1998;273(2):1252–6.

    CAS  PubMed  Google Scholar 

  326. Lavine KJ et al. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005;8(1):85–95.

    CAS  PubMed  Google Scholar 

  327. Lavine KJ et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20(12):1651–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  328. Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol. 2002;244(2):305–18.

    CAS  PubMed  Google Scholar 

  329. Gutin G et al. FGF signalling generates ventral telencephalic cells independently of SHH. Development. 2006;133(15):2937–46.

    CAS  PubMed  Google Scholar 

  330. Paek H, Gutin G, Hebert JM. FGF signaling is strictly required to maintain early telencephalic precursor cell survival. Development. 2009;136(14):2457–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  331. Furusho M et al. Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J Neurosci. 2011;31(13):5055–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  332. Li W et al. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development. 2003;130(24):6143–53.

    CAS  PubMed  Google Scholar 

  333. Poladia DP et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol. 2006;291(2):325–39.

    CAS  PubMed  Google Scholar 

  334. Hains DS et al. High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol. 2010;183(5):2077–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  335. Stevens HE et al. Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J Neurosci. 2010;30(16):5590–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  336. Kang W et al. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J Neurosci. 2009;29(46):14571–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  337. Yang J et al. Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. J Cell Biol. 2010;188(6):935–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  338. Zhao H et al. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev Biol. 2008;318(2):276–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  339. Kitamura T, Kahn CR, Accili D. Insulin receptor knockout mice. Annu Rev Physiol. 2003;65:313–32.

    CAS  PubMed  Google Scholar 

  340. Petrenko AG, et al. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance. Biochim Biophys Acta. 2013;1834(10):2170-5. doi:10.1016/j.bbapap.2012.11.011. Epub 2012 Dec 7.

  341. Wutz A et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature. 1997;389(6652):745–9.

    CAS  PubMed  Google Scholar 

  342. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12(3):159–69.

    CAS  PubMed  Google Scholar 

  343. Accili D et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996;12(1):106–9.

    CAS  PubMed  Google Scholar 

  344. Joshi RL et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 1996;15(7):1542–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  345. Bruning JC et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2(5):559–69.

    CAS  PubMed  Google Scholar 

  346. Kulkarni RN et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999;96(3):329–39.

    CAS  PubMed  Google Scholar 

  347. Bruning JC et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122–5.

    CAS  PubMed  Google Scholar 

  348. Guerra C et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest. 2001;108(8):1205–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  349. Bluher M et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002;3(1):25–38.

    CAS  PubMed  Google Scholar 

  350. Rask-Madsen C et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab. 2010;11(5):379–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  351. Belke DD et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest. 2002;109(5):629–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  352. Welsh GI et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 2010;12(4):329–40.

    CAS  PubMed  Google Scholar 

  353. Baumgartl J et al. Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. Cell Metab. 2006;3(4):247–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  354. Mauer J et al. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. PLoS Genet. 2010;6(5):e1000938.

    PubMed Central  PubMed  Google Scholar 

  355. Stachelscheid H et al. Epidermal insulin/IGF-1 signalling control interfollicular morphogenesis and proliferative potential through Rac activation. EMBO J. 2008;27(15):2091–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  356. Pitetti JL et al. Insulin receptor and IGF1R are not required for oocyte growth, differentiation, and maturation in mice. Sex Dev. 2009;3(5):264–72.

    CAS  PubMed  Google Scholar 

  357. Ock S et al. Conditional deletion of insulin receptor in thyrocytes does not affect thyroid structure and function. Endocr J. 2011;58(11):1013–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  358. Divall SA et al. Divergent roles of growth factors in the GnRH regulation of puberty in mice. J Clin Invest. 2010;120(8):2900–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  359. Benecke H et al. Muscle-specific expression of human insulin receptor in transgenic mice. Diabetes. 1993;42(1):206–12.

    CAS  PubMed  Google Scholar 

  360. Chang PY et al. Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem. 1994;269(23):16034–40.

    CAS  PubMed  Google Scholar 

  361. Moller DE et al. Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia. Endocrinology. 1996;137(6):2397–405.

    CAS  PubMed  Google Scholar 

  362. Okamoto H et al. Transgenic rescue of insulin receptor-deficient mice. J Clin Invest. 2004;114(2):214–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  363. Wang L et al. Hyperinsulinemia but no diabetes in transgenic mice homozygously expressing the tyrosine kinase-deficient human insulin receptor. Biochem Biophys Res Commun. 1997;240(2):446–51.

    CAS  PubMed  Google Scholar 

  364. Baudry A et al. Partial rescue of insulin receptor-deficient mice by transgenic complementation with an activated insulin receptor in the liver. Gene. 2002;299(1–2):219–25.

    CAS  PubMed  Google Scholar 

  365. Liu JP et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993;75(1):59–72.

    CAS  PubMed  Google Scholar 

  366. Kloting N et al. Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes. 2008;57(8):2074–82.

    PubMed Central  PubMed  Google Scholar 

  367. Holzenberger M et al. Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene. Nucleic Acids Res. 2000;28(21):E92.

    CAS  PubMed Central  PubMed  Google Scholar 

  368. Xuan S et al. Defective insulin secretion in pancreatic beta cells lacking type 1 IGF receptor. J Clin Invest. 2002;110(7):1011–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  369. Delmas V et al. Cre-mediated recombination in the skin melanocyte lineage. Genesis. 2003;36(2):73–80.

    CAS  PubMed  Google Scholar 

  370. Desbois-Mouthon C et al. Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J. 2006;20(6):773–5.

    CAS  PubMed  Google Scholar 

  371. Sutherland BW et al. Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Res. 2008;68(9):3495–504.

    CAS  PubMed  Google Scholar 

  372. Kappeler L et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol. 2008;6(10):e254.

    PubMed Central  PubMed  Google Scholar 

  373. Klinakis A et al. Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc Natl Acad Sci U S A. 2009;106(7):2359–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  374. Rowland KJ et al. Loss of glucagon-like peptide-2-induced proliferation following intestinal epithelial insulin-like growth factor-1-receptor deletion. Gastroenterology. 2011;141(6):2166–2175e7.

    CAS  PubMed  Google Scholar 

  375. Abbas A et al. The insulin-like growth factor-1 receptor is a negative regulator of nitric oxide bioavailability and insulin sensitivity in the endothelium. Diabetes. 2011;60(8):2169–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  376. Freude S et al. Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer's disease. FASEB J. 2009;23(10):3315–24.

    CAS  PubMed  Google Scholar 

  377. Li P et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138(9):1795–805.

    CAS  PubMed Central  PubMed  Google Scholar 

  378. Romero CJ et al. Targeted deletion of somatotroph insulin-like growth factor-I signaling in a cell-specific knockout mouse model. Mol Endocrinol. 2010;24(5):1077–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  379. Moellendorf S et al. IGF-IR signaling attenuates the age-related decline of diastolic cardiac function. Am J Physiol Endocrinol Metab. 2012;303(2):E213–22.

    CAS  PubMed  Google Scholar 

  380. McMullen JR et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 2004;279(6):4782–93.

    CAS  PubMed  Google Scholar 

  381. Fernandez AM et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 2001;15(15):1926–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  382. Fernandez AM et al. Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest. 2002;109(3):347–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  383. Bridgewater DJ et al. The role of the type I insulin-like growth factor receptor (IGF-IR) in glomerular integrity. Growth Horm IGF Res. 2008;18(1):26–37.

    CAS  PubMed  Google Scholar 

  384. Clement S et al. Low TSH requirement and goiter in transgenic mice overexpressing IGF-I and IGF-Ir receptor in the thyroid gland. Endocrinology. 2001;142(12):5131–9.

    CAS  PubMed  Google Scholar 

  385. Carboni JM et al. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 2005;65(9):3781–7.

    CAS  PubMed  Google Scholar 

  386. Jones RA et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene. 2007;26(11):1636–44.

    CAS  PubMed  Google Scholar 

  387. Wang ZQ et al. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature. 1994;372(6505):464–7.

    CAS  PubMed  Google Scholar 

  388. Lau MM et al. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994;8(24):2953–63.

    CAS  PubMed  Google Scholar 

  389. Ludwig T et al. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev Biol. 1996;177(2):517–35.

    CAS  PubMed  Google Scholar 

  390. Wutz A et al. Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development. 2001;128(10):1881–7.

    CAS  PubMed  Google Scholar 

  391. Hughes J et al. Maternal transmission of a humanised igf2r allele results in an igf2 dependent hypomorphic and non-viable growth phenotype. PLoS One. 2013;8(2):e57270.

    CAS  PubMed Central  PubMed  Google Scholar 

  392. Wylie AA et al. Tissue-specific inactivation of murine M6P/IGF2R. Am J Pathol. 2003;162(1):321–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  393. Pravtcheva DD, Wise TL. Igf2r improves the survival and transmission ratio of Igf2 transgenic mice. Mol Reprod Dev. 2008;75(11):1678–87.

    CAS  PubMed  Google Scholar 

  394. Wise TL, Pravtcheva DD. Delayed onset of Igf2-induced mammary tumors in Igf2r transgenic mice. Cancer Res. 2006;66(3):1327–36.

    CAS  PubMed  Google Scholar 

  395. Zaina S et al. Local reduction of organ size in transgenic mice expressing a soluble insulin-like growth factor II/mannose-6-phosphate receptor. Endocrinology. 1998;139(9):3886–95.

    CAS  PubMed  Google Scholar 

  396. Harper J et al. Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting. Cancer Res. 2006;66(4):1940–8.

    CAS  PubMed  Google Scholar 

  397. Kitamura T et al. Preserved pancreatic beta-cell development and function in mice lacking the insulin receptor-related receptor. Mol Cell Biol. 2001;21(16):5624–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  398. Deyev IE et al. Deficient Response to Experimentally Induced Alkalosis in Mice with the Inactivated insrr Gene. Acta Naturae. 2011;3(4):114–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  399. Park M et al. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci U S A. 1987;84(18):6379–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  400. Cooper CS et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.

    CAS  PubMed  Google Scholar 

  401. Giordano S et al. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature. 1989;339(6220):155–6.

    CAS  PubMed  Google Scholar 

  402. Ronsin C et al. A novel putative receptor protein tyrosine kinase of the met family. Oncogene. 1993;8(5):1195–202.

    CAS  PubMed  Google Scholar 

  403. Huff JL et al. The protooncogene c-sea encodes a transmembrane protein-tyrosine kinase related to the Met/hepatocyte growth factor/scatter factor receptor. Proc Natl Acad Sci U S A. 1993;90(13):6140–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  404. Bottaro DP et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–4.

    CAS  PubMed  Google Scholar 

  405. Stoker M et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327(6119):239–42.

    CAS  PubMed  Google Scholar 

  406. Gherardi E et al. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci U S A. 1989;86(15):5844–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  407. Di Renzo MF et al. Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene. 1991;6(11):1997–2003.

    PubMed  Google Scholar 

  408. Bussolino F et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol. 1992;119(3):629–41.

    CAS  PubMed  Google Scholar 

  409. Grant DS et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A. 1993;90(5):1937–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  410. Anastasi S et al. A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation. J Cell Biol. 1997;137(5):1057–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  411. Ebens A et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron. 1996;17(6):1157–72.

    CAS  PubMed  Google Scholar 

  412. Galimi F et al. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors. J Cell Biol. 1994;127(6 Pt 1):1743–54.

    CAS  PubMed  Google Scholar 

  413. Nishino T et al. Hepatocyte growth factor as a hematopoietic regulator. Blood. 1995;85(11):3093–100.

    CAS  PubMed  Google Scholar 

  414. Gherardi E, Stoker M. Hepatocyte growth factor–scatter factor: mitogen, motogen, and met. Cancer Cells. 1991;3(6):227–32.

    CAS  PubMed  Google Scholar 

  415. Schmidt C et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373(6516):699–702.

    CAS  PubMed  Google Scholar 

  416. Maina F et al. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell. 1996;87(3):531–42.

    CAS  PubMed  Google Scholar 

  417. Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci U S A. 1986;83(17):6489–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  418. Michalopoulos GK. Liver regeneration: molecular mechanisms of growth control. FASEB J. 1990;4(2):176–87.

    CAS  PubMed  Google Scholar 

  419. Rubin JS et al. A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc Natl Acad Sci U S A. 1991;88(2):415–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  420. Montesano R et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell. 1991;67(5):901–8.

    CAS  PubMed  Google Scholar 

  421. Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts. J Cell Sci. 1985;77:209–23.

    CAS  PubMed  Google Scholar 

  422. Wang MH et al. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science. 1994;266(5182):117–9.

    CAS  PubMed  Google Scholar 

  423. Iwama A et al. Terminal differentiation of murine resident peritoneal macrophages is characterized by expression of the STK protein tyrosine kinase, a receptor for macrophage-stimulating protein. Blood. 1995;86(9):3394–403.

    CAS  PubMed  Google Scholar 

  424. Wang MH et al. Requirement of phosphatidylinositol-3 kinase for epithelial cell migration activated by human macrophage stimulating protein. Oncogene. 1996;13(10):2167–75.

    CAS  PubMed  Google Scholar 

  425. Kurihara N et al. Macrophage-stimulating protein activates STK receptor tyrosine kinase on osteoclasts and facilitates bone resorption by osteoclast-like cells. Blood. 1996;87(9):3704–10.

    CAS  PubMed  Google Scholar 

  426. Iwama A, Yamaguchi N, Suda T. STK/RON receptor tyrosine kinase mediates both apoptotic and growth signals via the multifunctional docking site conserved among the HGF receptor family. EMBO J. 1996;15(21):5866–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  427. Banu N et al. Modulation of megakaryocytopoiesis by human macrophage-stimulating protein, the ligand for the RON receptor. J Immunol. 1996;156(8):2933–40.

    CAS  PubMed  Google Scholar 

  428. Danilkovitch A, Leonard EJ. Kinases involved in MSP/RON signaling. J Leukoc Biol. 1999;65(3):345–8.

    CAS  PubMed  Google Scholar 

  429. Danilkovitch A et al. Two independent signaling pathways mediate the antiapoptotic action of macrophage-stimulating protein on epithelial cells. Mol Cell Biol. 2000;20(6):2218–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  430. Bladt F et al. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376(6543):768–71.

    CAS  PubMed  Google Scholar 

  431. Chan AM et al. Primary structure of the met protein tyrosine kinase domain. Oncogene. 1987;1(2):229–33.

    CAS  PubMed  Google Scholar 

  432. Low MJ et al. Tissue-specific posttranslational processing of pre-prosomatostatin encoded by a metallothionein-somatostatin fusion gene in transgenic mice. Cell. 1985;41(1):211–9.

    CAS  PubMed  Google Scholar 

  433. Liang TJ et al. Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest. 1996;97(12):2872–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  434. Palmiter RD et al. Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol Cell Biol. 1993;13(9):5266–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  435. Hogan B, Costantini F, Lacy E. Manipulating the mouse embryo : a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1986. ix, 332 p.

    Google Scholar 

  436. Jeffers M et al. The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci U S A. 1998;95(24):14417–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  437. Hogan B. Manipulating the mouse embryo : a laboratory manual. 2nd ed. Plainview, NY: Cold Spring Harbor Laboratory Press; 1994. xvii, 497 p.

    Google Scholar 

  438. Kistner A et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A. 1996;93(20):10933–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  439. Wang R et al. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol. 2001;153(5):1023–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  440. Moshitch-Moshkovitz S et al. In vivo direct molecular imaging of early tumorigenesis and malignant progression induced by transgenic expression of GFP-Met. Neoplasia. 2006;8(5):353–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  441. Ponzo MG et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106(31):12903–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  442. Williams-Simons L, Westphal H. EIIaCre – utility of a general deleter strain. Transgenic Res. 1999;8(4):53–4.

    CAS  PubMed  Google Scholar 

  443. Postic C, Magnuson MA. DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis. 2000;26(2):149–50.

    CAS  PubMed  Google Scholar 

  444. Huh CG et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101(13):4477–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  445. Roccisana J et al. Targeted inactivation of hepatocyte growth factor receptor c-met in beta-cells leads to defective insulin secretion and GLUT-2 downregulation without alteration of beta-cell mass. Diabetes. 2005;54(7):2090–102.

    CAS  PubMed  Google Scholar 

  446. Yu J, Carroll TJ, McMahon AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development. 2002;129(22):5301–12.

    CAS  PubMed  Google Scholar 

  447. Ishibe S et al. Met and the epidermal growth factor receptor act cooperatively to regulate final nephron number and maintain collecting duct morphology. Development. 2009;136(2):337–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  448. Borowiak M et al. Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A. 2004;101(29):10608–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  449. Uehara Y et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373(6516):702–5.

    CAS  PubMed  Google Scholar 

  450. Huelsken J et al. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001;105(4):533–45.

    CAS  PubMed  Google Scholar 

  451. Chmielowiec J et al. c-Met is essential for wound healing in the skin. J Cell Biol. 2007;177(1):151–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  452. Graveel C et al. Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci U S A. 2004;101(49):17198–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  453. Graveel CR et al. Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci U S A. 2009;106(31):12909–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  454. Gaudino G et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 1994;13(15):3524–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  455. Correll PH et al. Deregulated inflammatory response in mice lacking the STK/RON receptor tyrosine kinase. Genes Funct. 1997;1(1):69–83.

    CAS  PubMed  Google Scholar 

  456. Muraoka RS et al. The Ron/STK receptor tyrosine kinase is essential for peri-implantation development in the mouse. J Clin Invest. 1999;103(9):1277–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  457. Monaghan AP et al. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development. 1993;119(3):567–78.

    CAS  PubMed  Google Scholar 

  458. Kaestner KH et al. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics. 1994;20(3):377–85.

    CAS  PubMed  Google Scholar 

  459. Kaestner KH et al. Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev. 1999;13(4):495–504.

    CAS  PubMed Central  PubMed  Google Scholar 

  460. Waltz SE et al. Ron-mediated cytoplasmic signaling is dispensable for viability but is required to limit inflammatory responses. J Clin Invest. 2001;108(4):567–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  461. Peace BE et al. Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer. Cancer Res. 2005;65(4):1285–93.

    CAS  PubMed  Google Scholar 

  462. Chan EL et al. Ron tyrosine kinase receptor regulates papilloma growth and malignant conversion in a murine model of skin carcinogenesis. Oncogene. 2005;24(3):479–88.

    CAS  PubMed  Google Scholar 

  463. Greenberg NM et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995;92(8):3439–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  464. Thobe MN et al. The Ron receptor promotes prostate tumor growth in the TRAMP mouse model. Oncogene. 2011;30(50):4990–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  465. Chen YQ et al. Multiple pulmonary adenomas in the lung of transgenic mice overexpressing the RON receptor tyrosine kinase. Carcinogenesis. 2002;23(11):1811–9.

    CAS  PubMed  Google Scholar 

  466. Zinser GM et al. Mammary-specific Ron receptor overexpression induces highly metastatic mammary tumors associated with beta-catenin activation. Cancer Res. 2006;66(24):11967–74.

    CAS  PubMed  Google Scholar 

  467. Babicky M. RON overexpression accelerates tumorigenesis and induces metastasis in a KRAS mutant mouse model of pancreatic cancer. Surgical Oncology I. 2011: S131. ISSN 1072-7515/11/$36.00 Published by Elsevier Inc. doi:10.1016/j.jamcollsurg.2011.06.314.

  468. Gray JK et al. Ron receptor overexpression in the murine prostate induces prostate intraepithelial neoplasia. Cancer Lett. 2012;314(1):92–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  469. DeChiara TM et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell. 1996;85(4):501–12.

    CAS  PubMed  Google Scholar 

  470. Glass DJ et al. Agrin acts via a MuSK receptor complex. Cell. 1996;85(4):513–23.

    CAS  PubMed  Google Scholar 

  471. Jones G et al. Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proc Natl Acad Sci U S A. 1997;94(6):2654–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  472. Sander A et al. Gene transfer into individual muscle fibers and conditional gene expression in living animals. Cell Tissue Res. 2000;301(3):397–403.

    CAS  PubMed  Google Scholar 

  473. Sander A, Hesser BA, Witzemann V. MuSK induces in vivo acetylcholine receptor clusters in a ligand-independent manner. J Cell Biol. 2001;155(7):1287–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  474. Hesser BA, Henschel O, Witzemann V. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol Cell Neurosci. 2006;31(3):470–80.

    CAS  PubMed  Google Scholar 

  475. Herbst R, Avetisova E, Burden SJ. Restoration of synapse formation in Musk mutant mice expressing a Musk/Trk chimeric receptor. Development. 2002;129(23):5449–60.

    CAS  PubMed  Google Scholar 

  476. Herbst R, Burden SJ. The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J. 2000;19(1):67–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  477. Arber S et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron. 1999;23(4):659–74.

    CAS  PubMed  Google Scholar 

  478. Yang X et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron. 2001;30(2):399–410.

    CAS  PubMed  Google Scholar 

  479. Kim N, Burden SJ. MuSK controls where motor axons grow and form synapses. Nat Neurosci. 2008;11(1):19–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  480. Chevessier F et al. A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions. Hum Mol Genet. 2008;17(22):3577–95.

    CAS  PubMed  Google Scholar 

  481. Moll J et al. An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature. 2001;413(6853):302–7.

    CAS  PubMed  Google Scholar 

  482. Punga AR et al. MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci. 2011;33(5):890–8.

    PubMed  Google Scholar 

  483. Ben Ammar A et al. A mutation causes MuSK reduced sensitivity to agrin and congenital myasthenia. PLoS One. 2013;8(1):e53826.

    CAS  PubMed Central  PubMed  Google Scholar 

  484. Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 2004;15(4):197–204.

    CAS  PubMed  Google Scholar 

  485. Levitzki A. PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases. Cytokine Growth Factor Rev. 2004;15(4):229–35.

    CAS  PubMed  Google Scholar 

  486. Hoch RV, Soriano P. Roles of PDGF in animal development. Development. 2003;130(20):4769–84.

    CAS  PubMed  Google Scholar 

  487. Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development. 1997;124(14):2691–700.

    CAS  PubMed  Google Scholar 

  488. Brennan J, Tilmann C, Capel B. Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 2003;17(6):800–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  489. Bostrom H, Gritli-Linde A, Betsholtz C. PDGF-A/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn. 2002;223(1):155–62.

    CAS  PubMed  Google Scholar 

  490. Stephenson DA et al. Platelet-derived growth factor receptor alpha-subunit gene (Pdgfra) is deleted in the mouse patch (Ph) mutation. Proc Natl Acad Sci U S A. 1991;88(1):6–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  491. Zhang FX, Hutchins JB. Expression of platelet-derived growth factor (PDGF) receptor alpha-subunit in mouse brain: comparison of Patch mutants and normal littermates. Cell Mol Neurobiol. 1996;16(4):479–87.

    CAS  PubMed  Google Scholar 

  492. Morrison-Graham K et al. A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development. 1992;115(1):133–42.

    CAS  PubMed  Google Scholar 

  493. Soriano P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 1994;8(16):1888–96.

    CAS  PubMed  Google Scholar 

  494. Lindahl P et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.

    CAS  PubMed  Google Scholar 

  495. Lindahl P et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125(17):3313–22.

    CAS  PubMed  Google Scholar 

  496. Mellgren AM et al. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res. 2008;103(12):1393–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  497. Tallquist MD, Soriano P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development. 2003;130(3):507–18.

    CAS  PubMed  Google Scholar 

  498. Jackson EL et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51(2):187–99.

    CAS  PubMed  Google Scholar 

  499. Bleyl SB et al. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Hum Mol Genet. 2010;19(7):1286–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  500. Chen H et al. PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature. 2011;478(7369):349–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  501. Nakamura Y et al. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011;31(14):3019–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  502. French WJ, Creemers EE, Tallquist MD. Platelet-derived growth factor receptors direct vascular development independent of vascular smooth muscle cell function. Mol Cell Biol. 2008;28(18):5646–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  503. Schmahl J, Rizzolo K, Soriano P. The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev. 2008;22(23):3255–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  504. Pickett EA, Olsen GS, Tallquist MD. Disruption of PDGFRalpha-initiated PI3K activation and migration of somite derivatives leads to spina bifida. Development. 2008;135(3):589–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  505. Gao Z et al. Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing. J Biol Chem. 2005;280(10):9375–89.

    CAS  PubMed  Google Scholar 

  506. Ishii Y et al. Mouse brains deficient in neuronal PDGF receptor-beta develop normally but are vulnerable to injury. J Neurochem. 2006;98(2):588–600.

    CAS  PubMed  Google Scholar 

  507. Chintalgattu V et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest. 2010;120(2):472–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  508. Gromley A et al. Transient expression of the Arf tumor suppressor during male germ cell and eye development in Arf-Cre reporter mice. Proc Natl Acad Sci U S A. 2009;106(15):6285–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  509. Shen J et al. PDGFR-beta as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab. 2012;32(2):353–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  510. Nguyen PT et al. Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-beta gene knockout mice. PLoS One. 2011;6(3):e18004.

    CAS  PubMed Central  PubMed  Google Scholar 

  511. Nakagawa T et al. Roles of PDGF receptor-beta in the structure and function of postnatal kidney glomerulus. Nephrol Dial Transplant. 2011;26(2):458–68.

    CAS  PubMed  Google Scholar 

  512. Kang J et al. PDGF-A as an epicardial mitogen during heart development. Dev Dyn. 2008;237(3):692–701.

    CAS  PubMed  Google Scholar 

  513. Smith CL et al. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res. 2011;108(12):e15–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  514. Richarte AM, Mead HB, Tallquist MD. Cooperation between the PDGF receptors in cardiac neural crest cell migration. Dev Biol. 2007;306(2):785–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  515. Klinghoffer RA et al. An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell. 2002;2(1):103–13.

    CAS  PubMed  Google Scholar 

  516. Klinghoffer RA et al. The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol Cell. 2001;7(2):343–54.

    CAS  PubMed  Google Scholar 

  517. Olson LE, Soriano P. Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis. Dev Cell. 2009;16(2):303–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  518. Hamilton TG et al. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol. 2003;23(11):4013–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  519. Moenning A et al. Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol. 2009;29(3):881–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  520. Kurth P et al. An activating mutation in the PDGF receptor alpha results in embryonic lethality caused by malformation of the vascular system. Dev Dyn. 2009;238(5):1064–72.

    CAS  PubMed  Google Scholar 

  521. Chiara F et al. A gain of function mutation in the activation loop of platelet-derived growth factor beta-receptor deregulates its kinase activity. J Biol Chem. 2004;279(41):42516–27.

    CAS  PubMed  Google Scholar 

  522. Krampert M, Heldin CH, Heuchel RL. A gain-of-function mutation in the PDGFR-beta alters the kinetics of injury response in liver and skin. Lab Invest. 2008;88(11):1204–14.

    CAS  PubMed  Google Scholar 

  523. Looman C et al. An activating mutation in the PDGF receptor-beta causes abnormal morphology in the mouse placenta. Int J Dev Biol. 2007;51(5):361–70.

    CAS  PubMed  Google Scholar 

  524. Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 2003;1(2):E52.

    PubMed Central  PubMed  Google Scholar 

  525. Heuchel R et al. Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3' kinase signaling. Proc Natl Acad Sci U S A. 1999;96(20):11410–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  526. Tallquist MD et al. Retention of PDGFR-beta function in mice in the absence of phosphatidylinositol 3'-kinase and phospholipase Cgamma signaling pathways. Genes Dev. 2000;14(24):3179–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  527. Olson LE, Soriano P. PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev Cell. 2011;20(6):815–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  528. Sun T et al. A human YAC transgene rescues craniofacial and neural tube development in PDGFRalpha knockout mice and uncovers a role for PDGFRalpha in prenatal lung growth. Development. 2000;127(21):4519–29.

    CAS  PubMed  Google Scholar 

  529. Reinertsen KK et al. Temporal and spatial specificity of PDGF alpha receptor promoter in transgenic mice. Gene Expr. 1997;6(5):301–14.

    CAS  PubMed  Google Scholar 

  530. Liao X, Escobedo JA, Williams LT. Viability of transgenic mice expressing a platelet derived growth factor (PDGF) antagonist in plasma. J Investig Med. 1996;44(4):139–43.

    CAS  PubMed  Google Scholar 

  531. Ritchie KA et al. The Tel-PDGFRbeta fusion gene produces a chronic myeloproliferative syndrome in transgenic mice. Leukemia. 1999;13(11):1790–803.

    CAS  PubMed  Google Scholar 

  532. Yuasa T et al. Platelet-derived growth factor stimulates glucose transport in skeletal muscles of transgenic mice specifically expressing platelet-derived growth factor receptor in the muscle, but it does not affect blood glucose levels. Diabetes. 2004;53(11):2776–86.

    CAS  PubMed  Google Scholar 

  533. Roesch K et al. The transcriptome of retinal Muller glial cells. J Comp Neurol. 2008;509(2):225–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  534. Carter CS et al. Abnormal development of NG2 + PDGFR-alpha + neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med. 2012;18(12):1797–804.

    CAS  PubMed Central  PubMed  Google Scholar 

  535. Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 2013;15(3):302–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  536. Kang SH et al. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron. 2010;68(4):668–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  537. De Biase LM et al. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J Neurosci. 2011;31(35):12650–62.

    PubMed Central  PubMed  Google Scholar 

  538. Cuttler AS et al. Characterization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries. Genesis. 2011;49(8):673–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  539. Lu X et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature. 2004;430(6995):93–8.

    CAS  PubMed  Google Scholar 

  540. Caddy J et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell. 2010;19(1):138–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  541. Paudyal A et al. The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear. BMC Dev Biol. 2010;10:87.

    PubMed Central  PubMed  Google Scholar 

  542. Yen WW et al. PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development. 2009;136(12):2039–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  543. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42:581–8.

    CAS  PubMed  Google Scholar 

  544. Schuchardt A et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    CAS  PubMed  Google Scholar 

  545. Burton MD et al. RET proto-oncogene is important for the development of respiratory CO2 sensitivity. J Auton Nerv Syst. 1997;63:137–43.

    CAS  PubMed  Google Scholar 

  546. Jijiwa M et al. A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol. 2004;24(18):8026–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  547. Smith-Hicks CL et al. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J. 2000;19:612–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  548. Asai N et al. Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development. 2006;133:4507–16.

    CAS  PubMed  Google Scholar 

  549. Carniti C et al. The Ret(C620R) mutation affects renal and enteric development in a mouse model of Hirschsprung’s disease. Am J Pathol. 2006;168:1262–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  550. Yin L et al. C620R mutation of the murine ret proto-oncogene: loss of function effect in homozygotes and possible gain of function effect in heterozygotes. Int J Cancer. 2007;121:292–300.

    CAS  PubMed  Google Scholar 

  551. Gould TW et al. The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes. J Neurosci. 2008;28:2131–46.

    CAS  PubMed  Google Scholar 

  552. Uesaka T et al. Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest. 2008;118:1890–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  553. Luo W et al. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron. 2009;64:841–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  554. Hippenmeyer S et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 2005;3(5):e159.

    PubMed Central  PubMed  Google Scholar 

  555. Jain S et al. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 2006;20:321–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  556. Encinas M et al. Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. J Biol Chem. 2004;279(18):18262–9.

    CAS  PubMed  Google Scholar 

  557. de Graaff E et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15:2433–44.

    PubMed Central  PubMed  Google Scholar 

  558. Wong A et al. Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol Cell Biol. 2005;25(21):9661–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  559. Tronche F et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet. 1999;23(1):99–103.

    CAS  PubMed  Google Scholar 

  560. Kramer ER et al. Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron. 2006;50:35–47.

    CAS  PubMed  Google Scholar 

  561. Zhuang X et al. Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods. 2005;143(1):27–32.

    CAS  PubMed  Google Scholar 

  562. Kramer ER et al. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 2007;5:e39.

    PubMed Central  PubMed  Google Scholar 

  563. Jain S et al. RET is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. J Neurosci. 2006;26:11230–8.

    CAS  PubMed  Google Scholar 

  564. Stirling LC et al. Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice. Pain. 2005;113(1–2):27–36.

    CAS  PubMed  Google Scholar 

  565. Golden JP et al. RET signaling is required for survival and normal function of nonpeptidergic nociceptors. J Neurosci. 2010;30:3983–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  566. Enomoto H et al. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development. 2001;128:3963–74.

    CAS  PubMed  Google Scholar 

  567. Yan H et al. Neural cells in the esophagus respond to glial cell line-derived neurotrophic factor and neurturin, and are RET-dependent. Dev Biol. 2004;272:118–33.

    CAS  PubMed  Google Scholar 

  568. Almeida ARM et al. RET/GFRα signals are dispensable for thymic T cell development in vivo. PLoS One. 2012;7:e52949.

    CAS  PubMed Central  PubMed  Google Scholar 

  569. de Boer J et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol. 2003;33(2):314–25.

    PubMed  Google Scholar 

  570. Baudet C et al. Retrograde signaling onto Ret during motor nerve terminal maturation. J Neurosci. 2008;28:963–75.

    CAS  PubMed  Google Scholar 

  571. Vallstedt A et al. Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron. 2001;31(5):743–55.

    CAS  PubMed  Google Scholar 

  572. Jain S et al. Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development. 2004;131:5503–13.

    CAS  PubMed  Google Scholar 

  573. Hayashi H et al. A novel RFP-RET transgenic mouse model with abundant eumelanin in the cochlea. Hear Res. 2004;195:35–40.

    CAS  PubMed  Google Scholar 

  574. Iwamoto T et al. Aberrant melanogenesis and melanocytic tumour development in transgenic mice that carry a metallothionein/ret fusion gene. EMBO J. 1991;10:3167–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  575. Kato M et al. Transgenic mouse model for skin malignant melanoma. Oncogene. 1998;17:1885–8.

    CAS  PubMed  Google Scholar 

  576. Kato M et al. RET tyrosine kinase enhances hair growth in association with promotion of melanogenesis. Oncogene. 2001;20:7536–41.

    CAS  PubMed  Google Scholar 

  577. Kato M et al. Novel hairless RET-transgenic mouse line with melanocytic nevi and anagen hair follicles. J Invest Dermatol. 2006;126:2547–50.

    CAS  PubMed  Google Scholar 

  578. Santoro M et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996;12:1821–6.

    CAS  PubMed  Google Scholar 

  579. Cho JY et al. Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic mice. Oncogene. 1999;18:3659–65.

    CAS  PubMed  Google Scholar 

  580. Jhiang SM. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137:375–8.

    CAS  PubMed  Google Scholar 

  581. Iwamoto T et al. Oncogenicity of the ret transforming gene in MMTV/ret transgenic mice. Oncogene. 1990;5:535–42.

    CAS  PubMed  Google Scholar 

  582. Sweetser DA et al. Ganglioneuromas and renal anomalies are induced by activated RET(MEN2B) in transgenic mice. Oncogene. 1999;18:877–86.

    CAS  PubMed  Google Scholar 

  583. Kawai K et al. Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res. 2000;60:5254–60.

    CAS  PubMed  Google Scholar 

  584. Acton DS et al. Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene. 2000;19:3121–5.

    CAS  PubMed  Google Scholar 

  585. Reynolds L et al. C-cell and thyroid epithelial tumours and altered follicular development in transgenic mice expressing the long isoform of MEN 2A RET. Oncogene. 2001;20:3986–94.

    CAS  PubMed  Google Scholar 

  586. Michiels FM et al. Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc Natl Acad Sci U S A. 1997;94:3330–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  587. Srinivas S et al. Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development. 1999;126:1375–86.

    CAS  PubMed  Google Scholar 

  588. Batourina E et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet. 2001;27:74–8.

    CAS  PubMed  Google Scholar 

  589. Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol. 2008;18(11):536–44.

    CAS  PubMed  Google Scholar 

  590. Oishi I et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells. 2003;8(7):645–54.

    CAS  PubMed  Google Scholar 

  591. He F et al. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development. 2008;135(23):3871–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  592. O'Connell MP et al. The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene. 2010;29(1):34–44.

    PubMed Central  PubMed  Google Scholar 

  593. Wright TM et al. Ror2, a developmentally regulated kinase, promotes tumor growth potential in renal cell carcinoma. Oncogene. 2009;28(27):2513–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  594. Nomi M et al. Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol. 2001;21(24):8329–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  595. Ho HY et al. Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci U S A. 2012;109(11):4044–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  596. Lyashenko N et al. Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev Dyn. 2010;239(8):2266–77.

    CAS  PubMed  Google Scholar 

  597. Yoda A, Oishi I, Minami Y. Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J Recept Signal Transduct Res. 2003;23(1):1–15.

    CAS  PubMed  Google Scholar 

  598. DeChiara TM et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet. 2000;24(3):271–4.

    CAS  PubMed  Google Scholar 

  599. Takeuchi S et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells. 2000;5(1):71–8.

    CAS  PubMed  Google Scholar 

  600. Valenzuela DM et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol. 2003;21(6):652–9.

    CAS  PubMed  Google Scholar 

  601. Raz R et al. The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome. Development. 2008;135(9):1713–23.

    CAS  PubMed  Google Scholar 

  602. Matsushime H, Wang LH, Shibuya M. Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol Cell Biol. 1986;6(8):3000–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  603. Neckameyer WS et al. Proto-oncogene c-ros codes for a molecule with structural features common to those of growth factor receptors and displays tissue specific and developmentally regulated expression. Mol Cell Biol. 1986;6(5):1478–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  604. Chen JM et al. The proto-oncogene c-ros codes for a transmembrane tyrosine protein kinase sharing sequence and structural homology with sevenless protein of Drosophila melanogaster. Oncogene. 1991;6(2):257–64.

    CAS  PubMed  Google Scholar 

  605. Tessarollo L, Nagarajan L, Parada LF. c-ros: the vertebrate homolog of the sevenless tyrosine kinase receptor is tightly regulated during organogenesis in mouse embryonic development. Development. 1992;115(1):11–20.

    CAS  PubMed  Google Scholar 

  606. El-Deeb IM, Yoo KH, Lee SH. ROS receptor tyrosine kinase: a new potential target for anticancer drugs. Med Res Rev. 2011;31(5):794-818. doi: 10.1002/med.20206. Epub 2010 Aug 4.

  607. Takeuchi K et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–81.

    CAS  PubMed  Google Scholar 

  608. Lee J et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer. 2013;119(9):1627–35.

    CAS  PubMed  Google Scholar 

  609. Sonnenberg-Riethmacher E et al. The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 1996;10(10):1184–93.

    CAS  PubMed  Google Scholar 

  610. Wagenfeld A et al. Lack of glutamate transporter EAAC1 in the epididymis of infertile c-ros receptor tyrosine-kinase deficient mice. J Androl. 2002;23(6):772–82.

    CAS  PubMed  Google Scholar 

  611. Yeung CH, Sonnenberg-Riethmacher E, Cooper TG. Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms. Biol Reprod. 1999;61(4):1062–9.

    CAS  PubMed  Google Scholar 

  612. Halford MM et al. Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nat Genet. 2000;25(4):414–8.

    CAS  PubMed  Google Scholar 

  613. Keeble TR et al. The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci. 2006;26(21):5840–8.

    CAS  PubMed  Google Scholar 

  614. Lu W et al. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell. 2004;119(1):97–108.

    CAS  PubMed  Google Scholar 

  615. Augustin HG et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–77.

    CAS  PubMed  Google Scholar 

  616. Rodewald HR, Sato TN. Tie1, a receptor tyrosine kinase essential for vascular endothelial cell integrity, is not critical for the development of hematopoietic cells. Oncogene. 1996;12(2):397–404.

    CAS  PubMed  Google Scholar 

  617. Girling JE, Rogers PA. Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin-TIE signalling system. Reproduction. 2009;138(6):883–93.

    CAS  PubMed  Google Scholar 

  618. Saharinen P, Bry M, Alitalo K. How do angiopoietins Tie in with vascular endothelial growth factors? Curr Opin Hematol. 2010;17(3):198–205.

    CAS  PubMed  Google Scholar 

  619. Arai F et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61.

    CAS  PubMed  Google Scholar 

  620. Takakura N et al. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity. 1998;9(5):677–86.

    CAS  PubMed  Google Scholar 

  621. David S et al. Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther. 2013;345(1):2–6.

    CAS  PubMed  Google Scholar 

  622. Holash J et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8.

    CAS  PubMed  Google Scholar 

  623. Saharinen P et al. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol. 2005;169(2):239–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  624. Winderlich M et al. VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol. 2009;185(4):657–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  625. Yuan HT et al. Activation of the orphan endothelial receptor Tie1 modifies Tie2-mediated intracellular signaling and cell survival. FASEB J. 2007;21(12):3171–83.

    CAS  PubMed  Google Scholar 

  626. Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res. 2006;312(5):630–41.

    CAS  PubMed  Google Scholar 

  627. Wong AL et al. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res. 1997;81(4):567–74.

    CAS  PubMed  Google Scholar 

  628. Puri MC et al. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 1995;14(23):5884–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  629. Woo KV et al. Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner. J Clin Invest. 2011;121(4):1624–35.

    PubMed Central  PubMed  Google Scholar 

  630. Sato TN et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376(6535):70–4.

    CAS  PubMed  Google Scholar 

  631. Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res. 1998;56(1):1–21.

    CAS  PubMed  Google Scholar 

  632. Qu X et al. Abnormal embryonic lymphatic vessel development in Tie1 hypomorphic mice. Development. 2010;137(8):1285–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  633. D'Amico G et al. Loss of endothelial Tie1 receptor impairs lymphatic vessel development-brief report. Arterioscler Thromb Vasc Biol. 2010;30(2):207–9.

    PubMed  Google Scholar 

  634. Dumont DJ et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994;8(16):1897–909.

    CAS  PubMed  Google Scholar 

  635. Tachibana K et al. Selective role of a distinct tyrosine residue on Tie2 in heart development and early hematopoiesis. Mol Cell Biol. 2005;25(11):4693–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  636. Puri MC et al. Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development. 1999;126(20):4569–80.

    CAS  PubMed  Google Scholar 

  637. Sarao R, Dumont DJ. Conditional transgene expression in endothelial cells. Transgenic Res. 1998;7(6):421–7.

    CAS  PubMed  Google Scholar 

  638. Jones N et al. Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep. 2001;2(5):438–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  639. Voskas D et al. A cyclosporine-sensitive psoriasis-like disease produced in Tie2 transgenic mice. Am J Pathol. 2005;166(3):843–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  640. Diamond I et al. Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J Invest Dermatol. 2000;115(5):788–94.

    CAS  PubMed  Google Scholar 

  641. Wolfram JA et al. Keratinocyte but not endothelial cell-specific overexpression of Tie2 leads to the development of psoriasis. Am J Pathol. 2009;174(4):1443–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  642. Hantzopoulos PA et al. The low affinity NGF receptor, p75, can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron. 1994;13(1):187–201.

    CAS  PubMed  Google Scholar 

  643. Nakagawara A et al. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics. 1995;25(2):538–46.

    CAS  PubMed  Google Scholar 

  644. Kaplan DR, Miller FD. Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol. 1997;9(2):213–21.

    CAS  PubMed  Google Scholar 

  645. Dixon JE, McKinnon D. Expression of the trk gene family of neurotrophin receptors in prevertebral sympathetic ganglia. Brain Res Dev Brain Res. 1994;77(2):177–82.

    CAS  PubMed  Google Scholar 

  646. Schober A et al. Reduced acetylcholinesterase (AChE) activity in adrenal medulla and loss of sympathetic preganglionic neurons in TrkA-deficient, but not TrkB-deficient, mice. J Neurosci. 1997;17(3):891–903.

    CAS  PubMed  Google Scholar 

  647. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

    CAS  PubMed  Google Scholar 

  648. Klein R et al. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature. 1994;368(6468):249–51.

    CAS  PubMed  Google Scholar 

  649. Klein R et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell. 1993;75(1):113–22.

    CAS  PubMed  Google Scholar 

  650. Smeyne RJ et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994;368(6468):246–9.

    CAS  PubMed  Google Scholar 

  651. Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann N Y Acad Sci. 1995;766:442–58.

    CAS  PubMed  Google Scholar 

  652. Fagan AM et al. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci. 1996;16(19):6208–18.

    CAS  PubMed  Google Scholar 

  653. Liebl DJ et al. Loss of brain-derived neurotrophic factor-dependent neural crest-derived sensory neurons in neurotrophin-4 mutant mice. Proc Natl Acad Sci U S A. 2000;97(5):2297–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  654. Chen X et al. A chemical-genetic approach to studying neurotrophin signaling. Neuron. 2005;46(1):13–21.

    PubMed  Google Scholar 

  655. Coppola V et al. Ablation of TrkA function in the immune system causes B cell abnormalities. Development. 2004;131(20):5185–95.

    CAS  PubMed  Google Scholar 

  656. Osborn L et al. Tissue-specific and insulin-dependent expression of a pancreatic amylase gene in transgenic mice. Mol Cell Biol. 1987;7(1):326–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  657. Dorsey SG et al. In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron. 2006;51(1):21–8.

    CAS  PubMed  Google Scholar 

  658. Lai KO et al. TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat Neurosci. 2012;15(11):1506–15.

    CAS  PubMed  Google Scholar 

  659. Luikart BW et al. In vivo role of truncated trkb receptors during sensory ganglion neurogenesis. Neuroscience. 2003;117(4):847–58.

    CAS  PubMed  Google Scholar 

  660. Medina DL et al. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J. 2004;23(19):3803–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  661. Minichiello L et al. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron. 2002;36(1):121–37.

    CAS  PubMed  Google Scholar 

  662. Minichiello L et al. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron. 1998;21(2):335–45.

    CAS  PubMed  Google Scholar 

  663. Rohrer B et al. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J Neurosci. 1999;19(20):8919–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  664. Xu B et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6(7):736–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  665. Rohrer B et al. Neurotrophin receptor TrkB activation is not required for the postnatal survival of retinal ganglion cells in vivo. Exp Neurol. 2001;172(1):81–91.

    CAS  PubMed  Google Scholar 

  666. Paredes A et al. TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary. Dev Biol. 2004;267(2):430–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  667. He XP et al. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron. 2004;43(1):31–42.

    CAS  PubMed  Google Scholar 

  668. Liu X et al. Brain-derived neurotrophic factor and TrkB modulate visual experience-dependent refinement of neuronal pathways in retina. J Neurosci. 2007;27(27):7256–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  669. Minichiello L et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron. 1999;24(2):401–14.

    CAS  PubMed  Google Scholar 

  670. Bergami M et al. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci U S A. 2008;105(40):15570–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  671. Chakravarthy S et al. Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci U S A. 2006;103(4):1071–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  672. Tessarollo L et al. Targeted deletion of all isoforms of the trkC gene suggests the use of alternate receptors by its ligand neurotrophin-3 in neuronal development and implicates trkC in normal cardiogenesis. Proc Natl Acad Sci U S A. 1997;94(26):14776–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  673. Postigo A et al. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev. 2002;16(5):633–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  674. Bai Y et al. In glaucoma the upregulated truncated TrkC.T1 receptor isoform in glia causes increased TNF-alpha production, leading to retinal ganglion cell death. Invest Ophthalmol Vis Sci. 2010;51(12):6639–51.

    PubMed Central  PubMed  Google Scholar 

  675. Moqrich A et al. Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat Neurosci. 2004;7(8):812–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  676. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2(7):a006502.

    PubMed Central  PubMed  Google Scholar 

  677. Olsson AK et al. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.

    CAS  PubMed  Google Scholar 

  678. Shinkai A et al. Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J Biol Chem. 1998;273(47):31283–8.

    CAS  PubMed  Google Scholar 

  679. Fuh G et al. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem. 1998;273(18):11197–204.

    CAS  PubMed  Google Scholar 

  680. Albuquerque RJ et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15(9):1023–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  681. Fujisawa H et al. Roles of a neuronal cell-surface molecule, neuropilin, in nerve fiber fasciculation and guidance. Cell Tissue Res. 1997;290(2):465–70.

    CAS  PubMed  Google Scholar 

  682. He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell. 1997;90(4):739–51.

    CAS  PubMed  Google Scholar 

  683. Nakamura F et al. Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron. 1998;21(5):1093–100.

    CAS  PubMed  Google Scholar 

  684. Kitsukawa T et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron. 1997;19(5):995–1005.

    CAS  PubMed  Google Scholar 

  685. Chen H et al. Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron. 1997;19(3):547–59.

    CAS  PubMed  Google Scholar 

  686. Kitsukawa T et al. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development. 1995;121(12):4309–18.

    CAS  PubMed  Google Scholar 

  687. Favier B et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood. 2006;108(4):1243–50.

    CAS  PubMed  Google Scholar 

  688. Soker S et al. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem. 2002;85(2):357–68.

    CAS  PubMed  Google Scholar 

  689. Fong GH et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376(6535):66–70.

    CAS  PubMed  Google Scholar 

  690. Hiratsuka S et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A. 1998;95(16):9349–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  691. Hiratsuka S et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 2001;61(3):1207–13.

    CAS  PubMed  Google Scholar 

  692. Hiratsuka S et al. Membrane fixation of vascular endothelial growth factor receptor 1 ligand-binding domain is important for vasculogenesis and angiogenesis in mice. Mol Cell Biol. 2005;25(1):346–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  693. Ku CH et al. Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes. 2008;57(10):2824–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  694. Ambati BK et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006;443(7114):993–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  695. Shalaby F et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–6.

    CAS  PubMed  Google Scholar 

  696. Sakurai Y et al. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A. 2005;102(4):1076–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  697. Ema M, Takahashi S, Rossant J. Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood. 2006;107(1):111–7.

    CAS  PubMed  Google Scholar 

  698. Licht AH et al. Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Dev Dyn. 2004;229(2):312–8.

    CAS  PubMed  Google Scholar 

  699. Dumont DJ et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 1998;282(5390):946–9.

    CAS  PubMed  Google Scholar 

  700. Karkkainen MJ et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A. 2001;98(22):12677–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  701. Ichise T, Yoshida N, Ichise H. H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development. 2010;137(6):1003–13.

    CAS  PubMed  Google Scholar 

  702. Haiko P et al. Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos. Mol Cell Biol. 2008;28(15):4843–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  703. Zhang L et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010;20(12):1319–31.

    CAS  PubMed  Google Scholar 

  704. Martinez-Corral I et al. In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proc Natl Acad Sci U S A. 2012;109(16):6223–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  705. Makinen T et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001;7(2):199–205.

    CAS  PubMed  Google Scholar 

  706. Kawasaki T et al. A requirement for neuropilin-1 in embryonic vessel formation. Development. 1999;126(21):4895–902.

    CAS  PubMed  Google Scholar 

  707. Giger RJ et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron. 2000;25(1):29–41.

    CAS  PubMed  Google Scholar 

  708. Yuan L et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129(20):4797–806.

    CAS  PubMed  Google Scholar 

  709. Takashima S et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A. 2002;99(6):3657–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  710. Gu C et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell. 2003;5(1):45–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  711. Goel HL et al. Neuropilin-2 promotes branching morphogenesis in the mouse mammary gland. Development. 2011;138(14):2969–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  712. Walz A, Rodriguez I, Mombaerts P. Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. J Neurosci. 2002;22(10):4025–35.

    CAS  PubMed  Google Scholar 

  713. Chen H et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron. 2000;25(1):43–56.

    PubMed  Google Scholar 

  714. Fong GH et al. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development. 1999;126(13):3015–25.

    CAS  PubMed  Google Scholar 

  715. Eremina V et al. Glomerular-specific gene excision in vivo. J Am Soc Nephrol. 2002;13(3):788–93.

    CAS  PubMed  Google Scholar 

  716. Jin J et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell. 2012;151(2):384–99.

    CAS  PubMed  Google Scholar 

  717. Partanen TA et al. Neuropilin-2 and vascular endothelial growth factor receptor-3 are up-regulated in human vascular malformations. Angiogenesis. 2013;16(1):137–46.

    CAS  PubMed  Google Scholar 

  718. Cursiefen C et al. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci U S A. 2006;103(30):11405–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  719. Vasioukhin V et al. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A. 1999;96(15):8551–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  720. Ashery-Padan R et al. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 2000;14(21):2701–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  721. Lallemand Y et al. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase. Transgenic Res. 1998;7(2):105–12.

    CAS  PubMed  Google Scholar 

  722. Means AL et al. Keratin 19 gene drives Cre recombinase expression throughout the early postimplantation mouse embryo. Genesis. 2005;42(1):23–7.

    CAS  PubMed  Google Scholar 

  723. Claxton S et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis. 2008;46(2):74–80.

    CAS  PubMed  Google Scholar 

  724. Tammela T et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 2011;13(10):1202–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  725. Mao X, Fujiwara Y, Orkin SH. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci U S A. 1999;96(9):5037–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  726. Rodriguez CI et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet. 2000;25(2):139–40.

    CAS  PubMed  Google Scholar 

  727. Kisanuki YY et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230(2):230–42.

    CAS  PubMed  Google Scholar 

  728. Suemori H et al. A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous beta-galactosidase expression. Cell Differ Dev. 1990;29(3):181–6.

    CAS  PubMed  Google Scholar 

  729. Dymecki SM. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A. 1996;93(12):6191–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  730. Skarnes WC et al. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci U S A. 1995;92(14):6592–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  731. Lanaya H et al. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol. 2014;16(10):972–81. doi:10.1038/ncb3031. Epub 2014 Aug 31.

  732. Wang Y et al. Cre/lox recombination in the lower urinary tract. Genesis. 2009;47(6):409–13.

    Google Scholar 

  733. Jin C et al. Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle, and ductus deferens. Prostate. 2003;57:160–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Holcmann or Maria Sibilia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holcmann, M. et al. (2015). Mouse Models of Receptor Tyrosine Kinases. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_11

Download citation

Publish with us

Policies and ethics