Skip to main content

Natural Antimicrobials for Food Biopreservation

  • Chapter
  • First Online:
Food Biopreservation

Abstract

Biopreservation or biocontrol refers to the use of natural or controlled microbiota, or its antibacterial products to extend the shelf life and enhance the safety of foods (Stiles 1996). Since lactic acid bacteria (LAB) occur naturally in many food systems and have a long history of safe use in fermented foods, thus classed as Generally Regarded As Safe (GRAS), they have a great potential for extended use in biopreservation. Antimicrobial substances from other natural sources, such as antimicrobial proteins or peptides from animal secretions, or bioactive molecules from plant or animal defense systems have also been exploited in different ways for food biopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriouel H, Franz CMAP, Ben Omar N (2011) Diversity and Applications of Bacillus Bacteriocins. FEMS Microbiol Revs 35:201–232

    Article  CAS  Google Scholar 

  • Adams MR, Nicolaides L (1997) Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 8:227–239

    Article  Google Scholar 

  • Ammor S, Tauveron G, Dufour E et al (2006) Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. 1. Screening and characterization of the antibacterial compounds. Food Control 17:454–461

    Article  CAS  Google Scholar 

  • Arqués JL, Fernandez J, Gaya P et al (2004) Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int J Food Microbiol 95:225–229

    Article  Google Scholar 

  • Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19

    Article  CAS  Google Scholar 

  • Bagamboula CF, Uyttendaele M, Debevere J (2004) Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 21:33–42

    Article  CAS  Google Scholar 

  • Bigwood T, Hudson JA, Billington C et al (2008) Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol 25:400–406

    Article  CAS  Google Scholar 

  • Bueno E, García P, Martínez B et al (2012) Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. Int J Food Microbiol 158:23–27

    Article  Google Scholar 

  • Burrowes O, Hadjicharalambous C, Diamond G et al (2004) Evaluation of antimicrobial spectrum and cytotoxic activity of pleurocidin for food applications. J Food Sci 69:FMS66–FMS71

    CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253

    Article  CAS  Google Scholar 

  • Chakchouk-Mtibaa A, Elleuch L, Smaoui S et al (2014) An antilisterial bacteriocin BacFL31 produced by Enterococcus faecium FL31 with a novel structure containing hydroxyproline residues. Anaerobe 27:1–6

    Article  CAS  Google Scholar 

  • Cicerale S, Lucas LJ, Keast RSJ (2012) Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23:129–135

    Article  CAS  Google Scholar 

  • Connerton PL, Timms AR, Connerton IF (2011) Campylobacter bacteriophages and bacteriophage therapy. J Appl Microbiol 111:255–265

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–7788

    Article  CAS  Google Scholar 

  • Dal Bello F, Clarke C, Ryan L et al (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318

    Article  CAS  Google Scholar 

  • de Wir J, van Hooydonk A (1996) Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Neth Milk Dairy 50:227–244

    Google Scholar 

  • Ellison RT (1994) The effects of lactoferrin on Gram-negative bacteria. In: Hutchens TW, Lönnerdal B, Rumball S (eds) Lactoferrin-structure and function. Plenum Press, New York, pp 71–87

    Chapter  Google Scholar 

  • Endersen L, O’Mahony J, Hill C et al (2014) Phage therapy in the food industry. Annu Rev Food Sci Technol 5:327–349

    Article  CAS  Google Scholar 

  • FDA (1998) Direct food substances affirmed as generally recognized as safe: egg white lysozyme. Fed Register 63:12421–12426

    Google Scholar 

  • Franklin TJ, Snow GA (1981) Biochemistry of antimicrobial action, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Franz CMAP, van Belkum MJ, Holzapfel WH (2007) Diversity of enterococcal bacteriocins and their grouping into a new classification scheme. FEMS Microbiol Rev 31:293–310

    Article  CAS  Google Scholar 

  • Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64:326–332

    Article  Google Scholar 

  • Gänzle MG, Höltzel A, Walter J et al (2000) Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333

    Article  Google Scholar 

  • Greer GG, Dilts BD (2002) Control of Brochothrix thermosphacta spoilage of pork adipose tissue using bacteriophages. J Food Prot 65:861–863

    CAS  Google Scholar 

  • Greer GG, Dilts BD, Ackermann HW (2007) Characterization of a Leuconostoc gelidum bacteriophage from pork. Int J Food Microbiol 114:370–375

    Article  CAS  Google Scholar 

  • Gutiérrez L, Escudero A, Rn B et al (2009) Effect of mixed antimicrobial agents and flavors in active packaging films. J Agric Food Chem 57:8564–8571

    Article  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Hagens S, Loessner MJ (2007) Application of bacteriophages for detection and control of foodborne pathogens. Appl Microbiol Biotechnol 76:513–519

    Article  CAS  Google Scholar 

  • Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68

    Article  CAS  Google Scholar 

  • Hagens S, Loessner MJ (2014) Phages of Listeria offer novel tools for diagnostics and biocontrol. Front Microbiol 10:5–159

    Google Scholar 

  • Helander IM, von Wright A, Mattila-Sandholm TM (1997) Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends Food Sci Technol 8:146–150

    Article  CAS  Google Scholar 

  • Holley RA, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22:273–292

    Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram positive bacteria. Microbiol Rev 59:171–200

    CAS  Google Scholar 

  • Jay JM (1982) Antimicrobial properties of diacetyl. Appl Environ Microbiol 44:525–532

    CAS  Google Scholar 

  • Jia X, Patrzykat A, Devlin RH et al (2000) Antimicrobial peptides protect Coho salmon from Vibrio anguillarum infections. Appl Environ Microbiol 66:1928–1932

    Article  CAS  Google Scholar 

  • Johnson RP, Gyles CL, Huff WE et al (2008) Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim Health Res Rev 9:201–215

    Article  CAS  Google Scholar 

  • Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Annu Rev Food Sci Technol 3:381–403

    Article  CAS  Google Scholar 

  • Jung HJ, Park Y, Sung WS et al (2007) Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophysic Acta (BBA)-Biomembr 1768:1400–1405

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    Article  CAS  Google Scholar 

  • Kong S, Davison AJ (1980) The role of interactions between O2, H2O2, ·OH, e and O2 in free radical damage to biological systems. Arch Biochem Biophys 204:18–29

    Article  CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  • Kyung KH (2012) Antimicrobial properties of allium species. Curr Opin Biotechnol 23:142–147

    Article  CAS  Google Scholar 

  • Lavermicocca P, Valerio F, Evidente A et al (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66:4048–4090

    Article  Google Scholar 

  • Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllacti acid against molds isolated from bakery products. Appl Environ Microbiol 69:634–640

    Article  CAS  Google Scholar 

  • Liu X, Vederas JC, Whittal RM et al (2011) Identification of an N-terminal formylated, two-peptide bacteriocin from Enterococcus faecalis 710C. J Agric Food Chem 59:5602–5608

    Article  CAS  Google Scholar 

  • Lönnerdal B (2011) Biological effects of novel bovine milk fractions. Nestle Nutr Workshop Ser Paediatr Program 67:41–54

    Article  Google Scholar 

  • Maher Z, Entsar E, Abdou S (2013) Chitosan based edible films and coatings: a review. Mat Sci Eng C 33:1819–1841

    Article  Google Scholar 

  • Möller NP, Scholz-Ahrens KE, Roos N et al (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47:171–182

    Article  Google Scholar 

  • Muhialdin BJ, Hassan Z, Sadon SK (2011) Biopreservation of food by lactic acid bacteria against spoilage fungi. Ann Food Sci Technol 12:45–57

    CAS  Google Scholar 

  • Nes IF, Diep DB, Håvarstein LS et al (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwen 70:113–128

    Article  CAS  Google Scholar 

  • Ng TB (2004) Antifungal proteins and peptides of leguminous and non-leguminous origins. Peptides 25:1215–1222

    Article  CAS  Google Scholar 

  • Niku-Paavola ML, Laitila A, Mattila-Sandholm T et al (1999) Newtypes of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol 86:29–35

    Article  CAS  Google Scholar 

  • Oliveira PML, Zannini E, Arendt EK (2014) Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiol 37:78–95

    Article  CAS  Google Scholar 

  • Padovan L, Scocchi M, Tossi A (2010) Structural aspects of plant antimicrobial peptides. Curr Prot Pept Sci 11:210–219

    Article  CAS  Google Scholar 

  • Pellegrini A (2003) Antimicrobial peptides from food proteins. Curr Pharm Des 9:1225–1238

    Article  CAS  Google Scholar 

  • Potter R, Truelstrup Hansen L, Gill TA (2005) Inhibition of foodborne bacteria by native and modified protamine: importance of electrostatic interactions. Int J Food Microbiol 103:23–34

    Article  CAS  Google Scholar 

  • Rea MC, Ross P, Cotter PD et al (2011) Classifications of bacteriocins from Gram positive bacteria. In: Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New York, pp 29–53

    Chapter  Google Scholar 

  • Reis JA, Paula AT, Casarotti SN et al (2012) Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 4:124–140

    Article  CAS  Google Scholar 

  • Richard AH, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22:273–292

    Article  Google Scholar 

  • Rodman TC, Pruslin FH, Allfrey VG (1984) Protamine-DNA association in mammalian spermatazoa. Experim Cell Res 150:269–281

    Article  CAS  Google Scholar 

  • Ryu EH, Yang EJ, Woo ER et al (2014) Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi. Food Microbiol 41:19–26

    Article  CAS  Google Scholar 

  • Sharma M (2013) Lytic bacteriophages. Potential interventions against enteric bacterial pathogens on produce. Bacteriophage 3:e25518

    Article  Google Scholar 

  • Shelef LA (1994) Antimicrobial effects of lactates, a review. J Food Prot 57:445–450

    CAS  Google Scholar 

  • Sillankorva S, Neubauer P, Azeredo J (2008) Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 27:8–79

    Google Scholar 

  • Stark J (2003) Natamycin: an effective fungicide for food and beverages (p 82–95). In: Roller S (ed) Natural antimicrobials for the minimal processing of foods. Woodhead, Cambridge, pp 82–97

    Google Scholar 

  • Stiles M (1996) Biopreservation by lactic acid bacteria. Antonie Van Leeuwen 70:331–345

    Article  CAS  Google Scholar 

  • Ström K, Sjögren J, Broberg A et al (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68:4322–4327

    Article  Google Scholar 

  • Sulakvelidze A (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric 93:3137–3146

    Article  CAS  Google Scholar 

  • Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218

    Article  CAS  Google Scholar 

  • Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679

    Article  CAS  Google Scholar 

  • Talarico TL, Casas IA, Chung TC et al (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32:1854–1858

    Article  CAS  Google Scholar 

  • Teerlink T, de Kruijff B, Demel RA (1980) The action of pimaricin, etruscomycin and amphotericin B on liposomes with varying sterol content. Biochim Biophys Acta 599:484–492

    Article  CAS  Google Scholar 

  • Tikhonov VE, Stepnova EA, Babak VG et al (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohyd Polym 64:66–72

    Article  CAS  Google Scholar 

  • USDA-FSIS (2010) Safe and suitable ingredients used in the production of meat, poultry, and egg products. FSIS Dir. 7120.1 Revision 2

    Google Scholar 

  • Uyttendaele M, Debevere J (1994) Evaluation of the antimicrobial activity of protamine. Food Microbiol 11:417–427

    Article  CAS  Google Scholar 

  • Valenti P, Visca P, Antonini G et al (1987) The effect of saturation with Zn2+ and other metal ions on the antibacterial activity of ovotransferrin. Med Microbiol Immunol 176:123–130

    Article  CAS  Google Scholar 

  • van Belkum MJ, Martin-Visscher LA, Vederas JC (2011) Structure and genetics of circular bacteriocins. Trends Microbiol 19:411–418

    Article  Google Scholar 

  • Yang EJ, Chang HC (2010) Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 139:56–63

    Article  CAS  Google Scholar 

  • Zhang H, Wang R, Bao H (2013) Phage inactivation of foodborne Shigella on ready-to-eat spiced chicken. Poultry Sci 92:211–217

    Article  Google Scholar 

  • Zuber S, Boissin-Delaporte C, Michot L et al (2008) Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol 1:532–543

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Gálvez, A., López, R.L., Pulido, R.P., Burgos, M.J.G. (2014). Natural Antimicrobials for Food Biopreservation. In: Food Biopreservation. SpringerBriefs in Food, Health, and Nutrition. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2029-7_2

Download citation

Publish with us

Policies and ethics