Skip to main content

Full Parallax 3D Video Content Compression

  • Chapter
  • First Online:
Novel 3D Media Technologies

Abstract

Motion parallax is a key cue in the perception of the depth that current 3D stereoscopy and auto-stereoscopy technologies are not able to reproduce. Integral imaging and Super Multi-View video (SMV) are 3D technologies that allow creating a light-field representation of a scene with a smooth full motion parallax (i.e., in horizontal and vertical directions). However the large amount of data required is challenging and implies a need for new efficient coding technologies. This chapter first describes integral imaging and SMV content, acquisition, and display. Then it provides an overview of state-of-the-art methods for full parallax 3D content compression. Finally, several coding schemes are compared and a coding structure that exploits inter-view correlations in both horizontal and vertical directions is proposed. The new structure provides a rate reduction (for the same quality) up to 29.1 % when compared to a basic anchor structure. Neighboring Block Disparity Vector (NBDV) and Inter-View Motion Prediction (IVMP) coding tools are further improved to efficiently exploit coding structures in two dimensions, with rate reduction up to 4.2 % with respect to the reference 3D-HEVC encoder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dufaux F, Pesquet-Popescu B, Cagnazzo M (2013) Emerging technologies for 3D video: content creation, coding, transmission and rendering. Wiley, New York

    Book  Google Scholar 

  2. Tehrani MP, Senoh T, Okui M, Yamamoto K, Inoue N, Fujii T (2013) [m31095][FTV AHG] Use cases and application scenarios for super multiview video and free-navigation. In: International organisation for standardisation. ISO/IEC JTC1/SC29/WG11

    Google Scholar 

  3. Adelson EH, Bergen JR (1991) The plenoptic function and the elements of early vision. Computational models of visual processing, vol 1. MIT Press, Cambridge

    Google Scholar 

  4. Lumsdaine A, Georgiev T (2008) Full resolution lightfield rendering. Indiana University and Adobe Systems, Tech. Rep

    Google Scholar 

  5. Tehrani MP, Senoh T, Okui M, Yamamoto K, Inoue N, Fujii T (2013) [m31261][FTV AHG] Multiple aspects. In: International Organisation for Standardisation. ISO/IEC JTC1/SC29/WG11, October 2013

    Google Scholar 

  6. Tehrani MP, Senoh T, Okui M, Yamamoto K, Inoue N, Fujii T (2013) [m31103][FTV AHG] Introduction of super multiview video systems for requirement discussion. In: International Organisation for Standardisation. ISO/IEC JTC1/SC29/WG11, October 2013

    Google Scholar 

  7. Lippmann G (1908) Epreuves reversibles donnant la sensation du relief. J. Phys Theor Appl 7(1):821–825

    Article  Google Scholar 

  8. Georgiev T, Lumsdaine A (2010) Focused plenoptic camera and rendering. J Electron Imag 19(2):021106

    Article  Google Scholar 

  9. https://www.lytro.com/

  10. https://raytrix.de/

  11. http://www.tgeorgiev.net/

  12. Iwasawa S, Kawakita M, Inoue N (2013) REI: an automultiscopic projection display. In: International conference on 3D systems and applications, vol 1, Osaka, June 2013

    Google Scholar 

  13. http://www.holografika.com/

  14. http://gl.ict.usc.edu/Research/3DDisplay/

  15. http://www.holymine3d.com/prod/prod03.html

  16. Yendo T, Fujii T, Tanimoto M, Panahpour Tehrani M (2010) The Seelinder: Cylindrical 3D display viewable from 360 degrees. J Vis Commun Image Represent 21(5):586–594, 2010

    Article  Google Scholar 

  17. Arai J, Kawai H, Okano F (2006) Microlens arrays for integral imaging system. Appl Opt 45(36):9066–9078

    Article  Google Scholar 

  18. Martinez-Cuenca R, Saavedra G, Martinez-Corral M, Javidi B (2009) Progress in 3-D multiperspective display by integral imaging. Proc. IEEE 97(6):1067–1077

    Article  Google Scholar 

  19. Lino JFO (2013) 2D image rendering for 3D holoscopic content using disparity-assisted patch blending. In: Thesis to obtain the Master of Science Degree

    Google Scholar 

  20. Forman M, Aggoun A, McCormick M (1995) Compression of integral 3D TV pictures. In: Fifth international conference on image processing and its applications, IET, Edinburgh, July 1995, pp 584–588

    Google Scholar 

  21. Aggoun A (2006) A 3D DCT compression algorithm for omnidirectional integral images. In: 2006 I.E. international conference on acoustics, speech and signal processing. ICASSP 2006 Proceedings, vol. 2, IEEE, Toulouse, May 2006, pp II–II

    Google Scholar 

  22. Forman MC, Aggoun A, McCormick M (1997) A novel coding scheme for full parallax 3D-TV pictures. In: 1997 I.E. international conference on acoustics, speech, and signal processing. ICASSP 1997 Proceedings, vol. 4, IEEE, Nagoya, August 1997, pp 2945–2947

    Google Scholar 

  23. Forman M, Aggoun A (1997) Quantisation strategies for 3D-DCT-based compression of full parallax 3D images. In: Sixth international conference on image processing and its applications, IET, Dublin, January 1997, pp 32–35

    Google Scholar 

  24. Elharar E, Stern A, Hadar O, Javidi B (2007) A hybrid compression method for integral images using discrete wavelet transform and discrete cosine transform. J Disp Technol 3(3):321–325

    Article  Google Scholar 

  25. Aggoun A (2011) Compression of 3D integral images using 3D wavelet transform. J Disp Technol 7(11):586–592

    Article  Google Scholar 

  26. Kishk S, Ahmed HEM, Helmy H (2011) Integral images compression using discrete wavelets and PCA. Int J Signal Process Image Process Pattern Recognit 4(2):65–78

    Google Scholar 

  27. Zayed HH, Kishk SE, Ahmed HM (2012) 3D wavelets with SPIHT coding for integral imaging compression. Int J Comput Sci Netw Secur 12(1):126

    Google Scholar 

  28. Olsson R, Sjostrom M, Xu Y (2006) A combined pre-processing and H. 264 compression scheme for 3D integral images. In: 2006 I.E. international conference on image processing, IEEE, Atlanta, October 2006, pp 513–516

    Google Scholar 

  29. Yeom S, Stern A, Javidi B (2004) Compression of 3D color integral images. Opt Express 12(8):1632–1642

    Article  Google Scholar 

  30. Yan P, Xianyuan Y (2011) Integral image compression based on optical characteristic. IET Comput Vis 5(3):164–168

    Article  Google Scholar 

  31. Kang H-H, Shin D-H, E-S Kim (2008) Compression scheme of sub-images using karhunen-loeve transform in three-dimensional integral imaging. Opt Commun 281(14):3640–3647

    Article  Google Scholar 

  32. Dick J, Almeida H, Soares LD, Nunes P (2011) 3D holoscopic video coding using MVC. In: 2011 I.E. EUROCON-international conference on computer as a tool, IEEE, Lisbon, April 2011, pp 1–4

    Google Scholar 

  33. Shi S, Gioia P, Madec G (2011) Efficient compression method for integral images using multi-view video coding. In: 18th IEEE international conference on image processing (ICIP), IEEE, Brussels, September 2011, pp 137–140

    Google Scholar 

  34. Ohm J-R (2013) Overview of 3D video coding standardization. In: International conference on 3D systems and applications, Osaka, June 2013

    Google Scholar 

  35. Adedoyin S, Fernando WAC, Aggoun A (2007) A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy. IEEE Trans Consum Electron 53(2):732–739

    Article  Google Scholar 

  36. Adedoyin S, Fernando WAC, Aggoun A, Kondoz K (2007) Motion and disparity estimation with self adapted evolutionary strategy in 3D video coding. IEEE Trans Consum Electron 53(4):1768–1775

    Article  Google Scholar 

  37. Marpe D, Wiegand T, Sullivan GJ (2006) The H. 264/MPEG4 advanced video coding standard and its applications. Commun Mag IEEE 44(8):134–143

    Article  Google Scholar 

  38. Sullivan GJ, Ohm J, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668

    Article  Google Scholar 

  39. Conti C, Lino J, Nunes P, Soares LD, Correia PL (2011) Improved spatial prediction for 3D holoscopic image and video coding. In Proc. EURASIP european signal processing conference (EUSIPCO), Barcelona, August 2011

    Google Scholar 

  40. Conti C, Lino J, Nunes P, Soares LD, Lobato Correia P (2011) Spatial prediction based on self-similarity compensation for 3D holoscopic image and video coding. In: 18th IEEE international conference on image processing (ICIP), IEEE, Brussels, September 2011, pp 961–964

    Google Scholar 

  41. Conti C, Nunes P, Soares LD (2012) New HEVC prediction modes for 3D holoscopic video coding. In: 19th IEEE international conference on image processing (ICIP), IEEE, Orlando, September–October 2012, pp 1325–1328

    Google Scholar 

  42. Conti C, Lino J, Nunes P, Soares LD (2012) Spatial and temporal prediction scheme for 3D holoscopic video coding based on H. 264/AVC. In: 19th international packet video workshop (PV), IEEE, Munich, May 2012, pp 143–148

    Google Scholar 

  43. Conti C, Nunes P, Soares LD (2013) Using self-similarity compensation for improving inter-layer prediction in scalable 3D holoscopic video coding. In: SPIE optical engineering and applications. International society for optics and photonics, September 2013, pp 88 561K–88 561K

    Google Scholar 

  44. Zhang L, Chen Y, Karczewicz M (2012) 3D-CE5.h related: Disparity vector derivation for multiview video and 3DV. In: International Organisation for Standardisation. ISO/IEC JTC1/SC29/WG11 MPEG2012/m24937, July 2012

    Google Scholar 

  45. Tech G, Wegner K, Chen Y, Yea S (2012) 3D-HEVC test model 2. In: International Organisation for Standardisation. ITU-T SG 16 WP 3 & ISO/IEC JTC1/SC29/WG11 JCT3V-B1005, October 2012

    Google Scholar 

  46. Helle P, Oudin S, Bross B, Marpe D, Bici MO, Ugur K, Jung J, Clare G, Wiegand T (2012) Block merging for quadtree-based partitioning in hevc. IEEE Trans Circuits Syst Video Technol 22(12):1720–1731

    Article  Google Scholar 

  47. Merkle P, Smolic A, Muller K, Wiegand T (2007) Efficient prediction structures for multiview video coding. IEEE Trans Circuits Syst Video Technol 17(11):1461–1473

    Article  Google Scholar 

  48. Chung T, Song K, Kim C-S (2008) Compression of 2-D wide multi-view video sequences using view interpolation. In: 15th IEEE international conference on image processing (ICIP), IEEE, San Diego, October 2008, pp 2440–2443

    Google Scholar 

  49. Chung T-Y, Jung I-L, Song K, Kim C-S (2009) Virtual view interpolation and prediction structure for full parallax multi-view video. In: Advances in multimedia information processing - PCM, vol 5879. Springer, Berlin, pp 543–550

    Google Scholar 

  50. Chung T-Y, Jung I-L, Song K, Kim C-S (2010) Multi-view video coding with view interpolation prediction for 2D camera arrays. J Vis Commun Image Represent 21(5):474–486

    Article  Google Scholar 

  51. Avci A, De Cock J, Lambert P, Beernaert R, De Smet J, Bogaert L, Meuret Y, Thienpont H, De Smet H (2012) Efficient disparity vector prediction schemes with modified P frame for 2D camera arrays. J Vis Commun Image Represent 23(2):287–292

    Article  Google Scholar 

  52. Dricot A, Jung J, Cagnazzo M, Pesquet B, Dufaux F (2014) Full parallax super multi-view video coding. In: 21st IEEE International Conference on Image Processing (ICIP), IEEE, Paris, October 2014

    Google Scholar 

  53. Rusanovsky D, Muller K, Vetro A (2012) Common test conditions of 3DV core experiments. In: International Organisation for Standardisation. ITU-T SG 16 WP 3 & ISO/IEC JTC1/SC29/WG11 JCT3V-B11000, October 2012

    Google Scholar 

  54. Bjøntegaard G (2001) Calculation of average PSNR differences between RD-curves. In: VCEG Meeting, Austin, April 2001

    Google Scholar 

Download references

Acknowledgements

The Coast sequence is provided by Orange Labs. The Akko&Kayo sequence is provided by Fujii Laboratory at Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cagnazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dricot, A., Jung, J., Cagnazzo, M., Pesquet, B., Dufaux, F. (2015). Full Parallax 3D Video Content Compression. In: Kondoz, A., Dagiuklas, T. (eds) Novel 3D Media Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2026-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2026-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2025-9

  • Online ISBN: 978-1-4939-2026-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics