Skip to main content

Molecular Mechanism of Force Production: From the Difficult 1980s to the Supercharged 1990s and Beyond

  • Chapter
  • First Online:
Book cover Mechanism of Muscular Contraction

Part of the book series: Perspectives in Physiology ((PHYSIOL))

  • 2168 Accesses

Abstract

At the time of the Cold Spring Harbor muscle meeting in 1972 there was much euphoria and great enthusiasm. Essentially all of the investigators there accepted the sliding filament, attached cross-bridge, model of muscle contraction as dogma and many even felt that the problem was solved. Throughout the 1970s and beyond experiments in the muscle field were designed with the underlying assumption of the correctness of the proposed model. After all there was Huxley’s (1969) swinging-tilting cross-bridge model of muscle contraction based on electron microscopic and X-ray diffraction evidence, the transient kinetic mechanical studies of Huxley and Simmons (1971) and the natural way that ATP was proposed to fit into the cross-bridge cycle by Lymn and Taylor (1971). The sliding filament model even appeared in introductory textbooks of physiology. Nonetheless there were difficult but essential issues that had to be addressed. Could the kinetic data derived from the biochemical studies of the actomyosin ATPase reaction mechanism be applied to contracting muscle fibers? Furthermore Huxley (1973) issued a cautionary note at the Cold Spring Harbor meeting when he said that “there is a large gap in our present knowledge, unfortunately right at the heart of the whole problem.” The gap concerned the lack of structural evidence for the proposed changes in the angle of cross-bridge attachment to actin during muscle contraction. This was a enormous problem that would hold up progress in much of the muscle field throughout the 1970s and early 1980s. In fact looking back on this period Huxley (1996) has commented that “…by the mid-1980s, confidence in a straightforward sliding filament mechanism for muscle contraction had been significantly eroded…”. What happened? Why was there skepticism about the sliding filament mechanism of contraction? Between the stagnant 1980s and early twenty-first century there was a spectacular revolution in muscle research that could not have been predicted by even the most ardent dreamer. The investigation of the mechanism of contraction moved from the study of the behavior of billions of cross-bridges in muscle fibers to the investigation of the mechanical properties of individual molecular motors. This work combined with the elucidation of the atomic structures of actin and myosin and the advent of mutagenesis approaches supercharged what would now be called the motility field. But it was still a major challenge to elucidate the mechanism of action of cross-bridges in muscle fibers. In 2004, Hugh Huxley finally proclaimed (Huxley 2004): “…I really do believe that, altogether, there is now incontrovertible evidence for the correctness of the tilting lever-arm model, although of course many important details still remain to be worked out.” (Huxley 2004. With permission John Wiley & Sons Inc) What was the incontrovertible evidence? Was the mechanism of muscle contraction finally solved? These and other issues will be considered in this chapter.

…by the mid-l980s, confidence in a straightforward sliding filament mechanism for muscle contraction had been significantly eroded… (Huxley 1996. With permission Annual Reviews)

H. E. Huxley (1996)

The structure of the myosin head, along with the fit to the actomyosin complex, represented an immense breakthrough in the field, which now can be subdivided into pre- and poststructural periods…A second major breakthrough in the field of motility was the development of in vitro measurements of the force and displacement produced by single myosin molecules. (Cooke 2004. With permission Rockefeller University Press)

R. Cooke (2004)

The main complication is that the action of cross-bridges is never truly synchronized, so what is observed comes from the overlapping cycles of many cross-bridges working in parallel. (Simmons 1992. With permission Elsevier)

R. M. Simmons (1992)

…I really do believe that, altogether, there is now incontrovertible evidence for the correctness of the tilting lever-arm model, although of course many important details still remain to be worked out. (Huxley 2004. With permission John Wiley & Sons Inc.)

H. E. Huxley (2004)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some other caged compounds besides caged ATP and caged Pi utilized in muscle research include: caged ADP, caged AMP, caged ATPγS, caged IP3, caged calcium (DM-nitrophen and nitre-5), caged calcium chelators (caged BAPTA and diazo-2) (Homsher and Millar 1990). A variety of biophysical signals, including mechanical, biochemical and structural changes, have been recorded with photolysis of caged compounds (Dantzig et al. 1998).

  2. 2.

    Manuel Francisco Morales (1919–2009) was a strong supporter of Japanese muscle biochemists. He was one of a small number of scientists, including John Gergely, from the United States who attended the first international conference on the chemistry of muscular contraction held in Japan in 1957. For his many contributions to Japanese science, he received the Order of the Rising Sun in Japan in 1989. He was elected to membership in the National Academy of Sciences in 1975. His publications span 66 years with his last publication at 88 years old. (Cooke and Highsmith 2011)

  3. 3.

    It was not possible to record an EPR spectrum during a mechanical transient in the early 1980s. The EPR technique required data collection of 1 min or more and thus was limited to steady states: rigor, rest, steady contraction. Fluorescence polarization (Irving et al. 1995) and the intrinsic technique of birefringence changes (Irving 1993) (See Chap. 1, footnote number 2 and associated text) do have the required sensitivity and temporal resolution.

  4. 4.

    Roger Cooke 1997 has written highly influential reviews in 1986, 1997 and 2004 summarizing the state of knowledge regarding the mechanism of muscle contraction.

  5. 5.

    Michael P. Sheetz shared the 2012 Lasker award for Basic Medical Research with James A. Spudich and Ronald D. Vale “for discoveries concerning cytoskeletal motor proteins, machines that move cargoes within cells, contract muscles, and enable cell movements.”

  6. 6.

    For a movie from the work of Kron and Spudich (1986) that shows fluorescently labeled actin filaments sliding over muscle myosin molecules that are attached to a glass microscope slide see: http://www.laskerfoundation.org/awards/2012_b_action02.htm.

  7. 7.

    Arthur Ashkin (1922–) is considered by many to be the father of optical trapping using lasers. He received a Ph.D. in physics from Cornell University in 1952 and spent his forty year research career with Bell Laboratories, retiring in 1992. He has received numerous honors and awards and was elected to membership of the National Academy of Sciences in 1996. He has written an overview of the history of the whole field of optical trapping from physics to biology and has complied a compendium of historically significant reprints with commentaries (Ashkin 2006).

  8. 8.

    This work was greatly facilitated by the utilization of video-enhanced differential interference contrast microscopy (VE-DIC) to visualize the moving microtubules. VE-DIC was discovered independently by Robert Allen and colleagues (Allen, Allen, and Travis 1981) and Shinya Inoue (1981). An explanation of the development of the technique and its role in discovering the function of the kinesin motor has been reviewed by Edward D. Salmon (1995). With VE-DIC microscopy it is possible to visualize movement of organelles and macromolecular complexes like microtubules whose dimensions are smaller than the diffraction limit of resolution of the light microscope.

  9. 9.

    The neck of the myosin S1 should not be confused with the S2 segment of myosin. See Figs. 3.11 and 3.23.

  10. 10.

    The numbering of some of the myosin surface loops is approximate since they vary in position slightly and length amongst the various myosin molecules.

  11. 11.

    Fluorescence polarization ratios (Q or sometimes P) are defined as Q = (I- I)/(I + I) and Q = (I - I)/(I + I). The pre- and post-subscripts in the fluorescence intensities (I) indicate excitation (pre) and emission (post) polarization relative to the fiber axis, either perpendicular (⊥) or parallel (║).

  12. 12.

    In X-ray diffraction experiments with whole muscles, an X-ray detector collects information from about 100 muscle fibers (Huxley et al. 2006). Thus single fiber experiments result in an approximate 100 fold lower X-ray detection for the same beam intensity and require extensive signal averaging of repeated contractions. (Reconditi et al. 2004). Nonetheless experiments with single fibers allow almost an order of magnitude higher temporal resolution of mechanical and structural changes than possible with whole muscle. Because muscle fibers diffract X-rays very weakly, it is necessary to use a very bright X-ray source and this means that the experiments must be performed at a synchrotron or electron storage ring facility such as the European Synchrotron Radiation Facility (ESRF), Grenoble, France or the Advanced Photon Source (APS), Argonne National Laboratory (ANL), outside of Chicago, Illinois. (Reconditi et al. 2004; Huxley et al. 2006).

  13. 13.

    One would not expect to see interference effects in the myosin pattern between one A-band in a myofibril and the next A-band in the same myofibril since the actin filaments between them have a subunit repeat different from that of the myosin, and are unlikely to maintain exact registration (Huxley et al. 2006).

References

  • Allen RD, Allen NS, Travis JL (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of allogromia laticollaris. Cell Motil 1:291–302

    Article  CAS  PubMed  Google Scholar 

  • Aronson JF, Morales MF (1969) Polarization of tryptophan fluorescence in muscle. Biochemistry 8:4517–4522

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A 94:4853–4860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashkin A (2006) Optical trapping and manipulation of neutral particles using lasers. World Scientific Publishing Co., Hackensack

    Book  Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  CAS  PubMed  Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50(Pt. 2):197–216

    Article  PubMed Central  PubMed  Google Scholar 

  • Block SM, Goldstein LSB, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  CAS  PubMed  Google Scholar 

  • Borejdo J, Putnam S (1977) Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation. Biochim Biophys Acta 459:578–595

    Article  CAS  PubMed  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238:97–101

    Article  CAS  PubMed  Google Scholar 

  • Brune M, Hunter JL, Corrie JET, Webb MR (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33:8262–8271

    Article  CAS  PubMed  Google Scholar 

  • Chantler PD, Szent-Gyorgyi AG (1980) Regulatory light-chains and scallop myosin: full dissociation, reversibility and co-operative effects. J Mol Biol 138:473–492

    Article  CAS  PubMed  Google Scholar 

  • Chu S (1997) Nobel lecture: the manipulation of neutral particles. Nobelprize.org. pp 122–158

    Google Scholar 

  • Cooke R (1986) The mechanism of muscle contraction. CRC Crit Rev Biochem 21:53–118

    Article  CAS  PubMed  Google Scholar 

  • Cooke R (1997) Actomyosin interaction in striated muscle. Physiol Rev 77:671–697

    CAS  PubMed  Google Scholar 

  • Cooke R (2004) The sliding filament model: 1972–2004. J Gen Physiol 123:643–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooke R, Highsmith S (2011) Manuel Francisco Morales, 1919–2009. Biogr Mem: Nat Acad Sci 3–16

    Google Scholar 

  • Cooke R, Morales MF (1969) Spin-label studies of glycerinated muscle fibers. Biochemistry 8:3188–3194

    Article  CAS  PubMed  Google Scholar 

  • Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48:789–798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooke R, Crowder MS, Thomas DD (1982) Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature 300:776–778

    Article  CAS  PubMed  Google Scholar 

  • Corrie JET, Craik JS, Munasinghe VRN (1998) A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. Bioconjug Chem 9:160–167

    Article  CAS  PubMed  Google Scholar 

  • Corrie JET, Brandmeier BD, Ferguson RE, Trentham DR, Kendrick-Jones J, Hopkins SC, van der Heide UA, Goldman YE, Sabido-David C, Dale RE, Criddle S, Irving M (1999) Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400:425–430

    Article  CAS  PubMed  Google Scholar 

  • Coureux P-D, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) A structural state of the myosin V motor without bound nucleotide. Nature 425:419–423

    Article  CAS  PubMed  Google Scholar 

  • Cyranoski D (2000) Swimming against the tide. Nature 408:764–766

    Article  CAS  PubMed  Google Scholar 

  • Dantzig JA, Hibberd MG, Trentham DR, Goldman YE (1991) Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol 432:639–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dantzig JA, Goldman YE, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol 451:247–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dantzig JA, Higuchi H, Goldman YE (1998) Studies of molecular motors using caged compounds. In: Marriott G (ed) Methods in enzymology, vol 291, Caged compounds. Academic, New York, pp 307–348

    Google Scholar 

  • De Lozanne A, Spudich JA (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236:1086–1091

    Article  PubMed  Google Scholar 

  • Dewey MM, Colflesh D, Brink P, S-f F, Gaylinn B, Gural N (1982) Structural, functional, and chemical changes in the contractile apparatus of Limulus striated muscle as a function of sarcomere shortening and tension development. In: Twarog BM, Levine RJC, Dewey MM (eds) Basic biology of muscles—a comparative approach. Raven Press, New York, pp 53–72

    Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571

    Article  CAS  PubMed  Google Scholar 

  • dos Remedios CG, Millikan RGC, Morales MF (1972a) Polarization of tryptophan fluorescence from single striated muscle fibers. J Gen Physiol 59:103–120

    Article  PubMed Central  PubMed  Google Scholar 

  • dos Remedios CG, Yount RG, Morales MF (1972b) Individual states in the cycle of muscle contraction. Proc Natl Acad Sci U S A 69:2542–2546

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferenczi MA (1986) Phosphate burst in permeable muscle fibers of the rabbit. Biophys J 50:471–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferenczi MA, Homsher E, Trentham DR (1984) The kinetics of magnesium adenosine triphosphate cleavage in skinned muscle fibres of the rabbit. J Physiol 353:575–599

    Article  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368:113–119

    Article  CAS  PubMed  Google Scholar 

  • Fisher AJ, Smith CA, Thoden J, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP∙BeFx and MgADP∙AlF4 -. Biochemistry 34:8960–8972

    Article  CAS  PubMed  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1974) Mechanism of early tension recovery after a quick release in tetanized muscle fibres. J Physiol 240:42–43P

    Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1985) Tension transients during steady shortening of frog muscle fibres. J Physiol 361:131–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujii T, Iwane AH, Yanagida T, Namba K (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724–729

    Article  CAS  PubMed  Google Scholar 

  • Furch M, Geeves MA, Manstein DJ (1998) Modulation of actin affinity and actomyosin adenosine triphosphatase by charge changes in the myosin motor domain. Biochemistry 37:6317–6326

    Article  CAS  PubMed  Google Scholar 

  • Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. In: Squire JM, Parry DAD (eds) Advances in protein chemistry: fibrous proteins—muscle and molecular motors. Elsevier Academic Press, San Diego, pp 161–193

    Chapter  Google Scholar 

  • Goldman YE, Brenner B (1987) Special topic: molecular mechanism of muscle contraction. Annu Rev Physiol 49:629–636

    Article  CAS  PubMed  Google Scholar 

  • Goldman YE, Hibberd MG, McCray JA, Trentham DR (1982) Relaxation of muscle fibres by photolysis of caged ATP. Nature 300:701–705

    Article  CAS  PubMed  Google Scholar 

  • Goldman YE, Hibberd MG, McCray JA, Trentham DR (1984a) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5′-triphosphate. J Physiol 354:577–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldman YE, Hibberd MG, McCray JA, Trentham DR (1984b) Initiation of active contraction by photogeneration of adenosine-5′-triphosphate in rabbit psoas muscle fibres. J Physiol 354:605–624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  PubMed  Google Scholar 

  • Guilford WH, Dupuis DE, Kennedy G, Wu J, Patlak JB, Warshaw DM (1997) Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J 72:1006–1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gyimesi M, Tsaturyan AK, Kellermayer MSZ, Malnasi-Csizmadia A (2008) Kinetic characterization of the function of myosin loop 4 in the actin-myosin interaction. Biochemistry 47:283–291

    Article  CAS  PubMed  Google Scholar 

  • Hanson J, Lowy J (1963) The structure of F-actin and actin filaments isolated from muscle. J Mol Biol 6:46–60

    Article  CAS  Google Scholar 

  • Harada Y, Yanagida T (1988) Direct observation of molecular motility by light microscopy. Cell Motil Cytoskeleton 10:71–76

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Sakurada K, Aoki T, Thomas DD, Yanagida T (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol 216:49–68

    Article  CAS  PubMed  Google Scholar 

  • Harrington WF (1971) A mechanochemical mechanism for muscle contraction. Proc Natl Acad Sci U S A 68:685–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Z-H, Chillingworth RK, Brune M, Corrie JET, Trentham DR, Webb MR, Ferenczi MA (1997) ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. J Physiol 501:125–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hibberd MG, Dantzig JA, Trentham DR, Goldman YE (1985) Phosphate release and force generation in skeletal muscle fibers. Science 228:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Hill TL (1974) Theoretical formalism for the sliding filament model of muscle contraction of striated muscle. Part 1. Prog Biophys Mol Biol 28:267–340

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC (1996) Muscle proteins—their actions and interactions. Curr Biol 6:781–789

    Article  CAS  Google Scholar 

  • Holmes KC (2004) Introduction. Philos Trans R Soc Lond B Biol Sci 359:1813–1818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes KC (2008) Myosin structure. In: Coluccio LM (ed) Myosin: a superfamily of molecular motors. Springer, Dordrecht, pp 35–54

    Google Scholar 

  • Holmes KC (2009) Actin in a twist. Nature 457:389–390

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  PubMed  Google Scholar 

  • Homsher E, Millar NC (1990) Caged compounds and striated muscle contraction. Annu Rev Physiol 52:875–896

    Article  CAS  PubMed  Google Scholar 

  • Homsher E, Irving M, Wallner A (1981) High-energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle. J Physiol 321:423–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Homsher E, Lacktis J, Regnier M (1997) Strain-dependent modulation of phosphate transients in rabbit skeletal muscle fibers. Biophys J 72:1780–1791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopkins SC, Sabido-David C, van der Heide UA, Ferguson RE, Brandmeier BD, Dale RE, Kendrick-Jones J, Corrie JET, Trentham DR, Irving M, Goldman YE (2002) Orientation changes of the myosin light chain domain during filament sliding in active and rigor muscle. J Mol Biol 318:1275–1291

    Article  CAS  PubMed  Google Scholar 

  • Houdusse A, Cohen C (1996) Structure of the regulatory domain of scallop myosin at 2 Å resolution: implications for regulation. Structure 4:21–32

    Article  CAS  PubMed  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Huxley AF (1995) Crossbridge tilting confirmed. Nature 375:631–632

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1973) Muscle 1972: progress and problems. Cold Spring Harb Symp Quant Biol 37:689–693

    Article  CAS  Google Scholar 

  • Huxley HE (1985) The crossbridge mechanism of muscular contraction and its implications. J Exp Biol 115:17–30

    CAS  PubMed  Google Scholar 

  • Huxley HE (1996) A personal view of muscle and motility mechanisms. Annu Rev Physiol 58:1–29

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271:1403–1415

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE, Kress M (1985) Crossbridge behaviour during muscle contraction. J Muscle Res Cell Motil 6:153–161

    Article  CAS  PubMed  Google Scholar 

  • Huxley H, Reconditi M, Stewart A, Irving T (2006) X-ray interference studies of crossbridge actin in muscle contraction: evidence from quick releases. J Mol Biol 363:743–761

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE, Simmons RM, Faruqi AR, Kress M, Bordas J, Koch MHJ (1983) Changes in the x-ray reflections from contracting muscle during rapid mechanical transients and their structural implications. J Mol Biol 169:469–506

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE, Stewart A, Sosa H, Irving T (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J 67:2411–2421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue S (1981) Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J Cell Biol 89:346–356

    Article  CAS  PubMed  Google Scholar 

  • Irving M (1987) Muscle mechanics and probes of the crossbridge cycle. In: Squire JM, Vibert P (eds) Fibrous protein structure. Academic Press, New York, pp 495–528

    Google Scholar 

  • Irving M (1993) Birefringence changes associated with isometric contraction and rapid shortening steps in frog skeletal muscle fibres. J Physiol 472:127–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irving M, Kendrick-Jones J, Shrimpton C, Sleep J (1989) The orientation of rhodamine probes attached to myosin light chain-2 (LC-2) in relaxing and rigor conditions in single fibres isolated from rabbit psoas muscle. J Physiol 418:57P

    Google Scholar 

  • Irving M, Lombardi V, Piazzesi G, Ferenczi MA (1992) Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature 357:156–158

    Article  CAS  PubMed  Google Scholar 

  • Irving M, Allen TSC, Sabido-David C, Cralk JS, Brandmeier B, Kendrick-Jones J, Corrie JET, Trentham DR, Goldman YE (1995) Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle. Nature 375:688–691

    Article  CAS  PubMed  Google Scholar 

  • Irving M, Piazzesi G, Lucii L, Sun Y-B, Harford JJ, Dobbie IM, Ferenczi MA, Reconditi M, Lombardi V (2000) Conformation of the myosin motor during force generation in skeletal muscle. Nat Struct Biol 7:482–485

    Article  CAS  PubMed  Google Scholar 

  • Ishijima A, Kojima H, Higuchi H, Harada Y, Funatsu T, Yanagida T (1996) Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and force. Biophys J 70:383–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JH, Forbush BIII, Hoffman JF (1978) Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17:1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned rabbit psoas muscle. Biophys J 59:329–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kersey YM, Hepler PK, Palevitz BA, Wessells NK (1976) Polarity of actin filaments in Characean algae. Proc Natl Acad Sci 73:165–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitamura K, Tokunaga M, Iwane A, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:129–134

    Article  CAS  PubMed  Google Scholar 

  • Kron SJ, Spudich JA (1986) Fluorescent actin filaments move myosin fixed to a glass surface. Proc Natl Acad Sci U S A 83:6272–6276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuo SC, Sheetz MP (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234

    Article  CAS  PubMed  Google Scholar 

  • Lazarides E, Lindberg U (1974) Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A 71:4742–4746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine RJC, Kensler RW (1985) Structure of short thick filaments from Limulus muscle. J Mol Biol 182:347–352

    Article  CAS  PubMed  Google Scholar 

  • Levine RJC, Davidheiser S, Kelly AM, Kensler RW, Leferovich J, Davies RE (1989) Fibre types in Limulus telson muscles: morphology and histochemistry. J Muscle Res Cell Motil 10:53–66

    Article  CAS  PubMed  Google Scholar 

  • Linari M, Piazzesi G, Dobbie I, Koubassova N, Reconditi M, Narayanan T, Diat O, Irving M, Lombardi V (2000) Interference fine structure and sarcomere length dependence of the axial x-ray pattern from active single muscle fibers. Proc Natl Acad Sci U S A 97:7226–7231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lombardi V, Piazzesi G, Reconditi M, Linari M, Lucii L, Stewart A, Sun Y-B, Boesecke P, Narayanan T, Irving T, Irving M (2004) X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philos Trans R Soc Lond B Biol Sci 359:1883–1893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanisms of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  CAS  PubMed  Google Scholar 

  • Mannherz HG, Leigh JB, Leberman R, Pfrang H (1975) A specific 1:1 G-actin:DNAase I complex formed by the action of DNAase I on F-actin. FEBS Lett 60:34–38

    Article  CAS  PubMed  Google Scholar 

  • Mannherz HG, Kabsch W, Leberman R (1977) Crystals of skeletal muscle actin: pancreatic DNAase I complex. FEBS Lett 73:141–143

    Article  CAS  PubMed  Google Scholar 

  • Manstein DJ, Titus MA, De Lozanne A, Spudich JA (1989) Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J 8:923–932

    PubMed Central  CAS  PubMed  Google Scholar 

  • McConnell HM, McFarland BG (1970) Physics and chemistry of spin labels. Q Rev Biophys 3:91–136

    Article  CAS  PubMed  Google Scholar 

  • McCray JA, Herbette L, Kihara T, Trentham DR (1980) A new approach to time-resolved studies of ATP-requiring biological systems: laser flash photolysis of caged ATP. Proc Natl Acad Sci U S A 77:7237–7241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta AD, Finer JT, Spudich JA (1997) Detection of single-molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci 94:7927–7931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DCS (1995) Movement and force produced by a single myosin head. Nature 378:209–212

    Article  CAS  PubMed  Google Scholar 

  • Moss RL, Giulian GG, Greaser ML (1982) Physiological effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibers. J Biol Chem 267:8588–8591

    Google Scholar 

  • Murphy CT, Spudich JA (2000) Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil 21:139–151

    Article  CAS  PubMed  Google Scholar 

  • O’Brien EJ, Bennett PM, Hanson J (1971) Optical diffraction studies of myofibrillar structure. Philos Trans R Soc Lond B Biol Sci 261:201–208

    Article  PubMed  Google Scholar 

  • Oda T, Iwasa M, Aihara T, Maeda Y, Narita A (2009) The nature of the globular- to fibrous-actin transition. Nature 457:441–445

    Article  CAS  PubMed  Google Scholar 

  • Oefner C, Suck D (1986) Crystallographic refinement and structure of DNase I at 2 A resolution. J Mol Biol 192:605–632

    Article  CAS  PubMed  Google Scholar 

  • Piazzesi G, Lucii L, Lombardi V (2002) The size and the speed of the working stroke of muscle myosin and its dependence on the force. J Physiol 545:145–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Podolsky RJ (1960) Kinetics of muscular contraction: the approach to the steady state. Nature 188:666–668

    Article  CAS  PubMed  Google Scholar 

  • Pollack GH (1983) The cross-bridge theory. Physiol Rev 62:1049–1113

    Google Scholar 

  • Rayment I, Winkelmann DA (1984) Crystallization of myosin subfragment 1. Proc Natl Acad Sci U S A 81:4378–4380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rayment I, Holden M, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993a) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993b) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  PubMed  Google Scholar 

  • Reconditi M (2006) Recent improvements in small angle x-ray diffraction for the study of muscle physiology. Rep Prog Phys 69:2709–2759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reconditi M, Linari M, Lucii L, Stewart A, Sun Y-B, Boesecke P, Narayanan T, Fischetti RF, Irving T, Piazzesi G, Irving M, Lombardi V (2004) The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428:578–581

    Article  CAS  PubMed  Google Scholar 

  • Rome E (1973) Structural studies by X-ray diffraction of striated muscle permeated with certain ions and proteins. Cold Spring Harb Symp Quant Biol 37:331–339

    Article  CAS  Google Scholar 

  • Rome E, Offer G, Pepe FA (1973a) X-ray diffraction of muscle labelled with antibody to C-protein. Nature 244:152–154

    Article  CAS  Google Scholar 

  • Rome E, Hirabayashi T, Perry SV (1973b) X-ray diffraction of muscle labeled with antibody to troponin-C. Nature 244:154–155

    CAS  Google Scholar 

  • Rovner AS, Freyzon Y, Trybus KM (1995) Chimeric substitutions of the actin-binding loop activate dephosphorylated but not phosphorylated smooth muscle heavy meromyosin. J Biol Chem 270:30260–30263

    Article  CAS  PubMed  Google Scholar 

  • Salmon ED (1995) VE-DIC light microscopy and the discovery of kinesin. Trends Cell Biol 5:154–158

    Article  CAS  PubMed  Google Scholar 

  • Sellers JR (1999) Myosins, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31–35

    Article  CAS  PubMed  Google Scholar 

  • Siemankowski RF, Wiseman MO, White HD (1985) ADP dissociation from actomyosin in subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A 82:658–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simmons RM (1992) Testing time for muscle. Curr Biol 2:373–375

    Article  CAS  PubMed  Google Scholar 

  • Sleep JA, Hutton RL (1980) Exchange between inorganic phosphate and adenosine 5′-triphosphate in the medium by actomyosin subfragment 1. Biochemistry 19:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Rayment I (1996) X-ray structure of the magnesium(II)∙ADP∙vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution. Biochemistry 35:5404–5417

    Article  CAS  PubMed  Google Scholar 

  • Splettstoesser T, Holmes KC, Noe F, Smith JC (2011) Structural modeling and molecular dynamics simulation of the actin filament. Proteins 79:2033–2043

    Article  CAS  PubMed  Google Scholar 

  • Spudich JA (1994) How molecular motors work. Nature 372:515–518

    Article  CAS  PubMed  Google Scholar 

  • Spudich JA (2011) Molecular motors: forty years of interdisciplinary research. Mol Biol Cell 22:3936–3939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spudich JA (2012) One path to understanding energy transduction in biological systems. Nat Med 18:8–12

    Article  CAS  Google Scholar 

  • Spudich JA, Kron SJ, Sheetz MP (1985) Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature 315:584–586

    Article  CAS  PubMed  Google Scholar 

  • Suck D, Kabsch W, Mannherz HG (1981) Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNase I at 6-Å resolution. Proc Natl Acad Sci 78:4319–4323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Holzbaur ELF (1996) Mutational analysis of motor proteins. Annu Rev Physiol 58:751–792

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  CAS  PubMed  Google Scholar 

  • Sweeney HL, Straceski AJ, Leinwand LA, Tikunov BA, Faust L (1994) Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem 269:1603–1605

    CAS  PubMed  Google Scholar 

  • Sweeney HL, Rosenfeld SS, Brown F, Faust L, Smith J, Xing J, Stein LA, Sellers JR (1998) Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem 273:6262–6270

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Shuman H, Goldman YE (2004) Coupling between phosphate release and force generation in muscle actomyosin. Philos Trans R Soc Lond B Biol Sci 359:1913–1920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka H, Ishijima A, Honda M, Saito K, Yanagida T (1998) Orientation dependent displacements by single one-headed myosin molecules in a synthetic myosin filament. Biophys J 75:1886–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor R (1993) Crystal structure of the myosin head turbocharges molecular-motor research. J NIH Res 5:58–62

    Google Scholar 

  • Thomas DD (1987) Spectroscopic probes of muscle cross-bridge rotation. Annu Rev Physiol 49:691–709

    Article  CAS  PubMed  Google Scholar 

  • Thomas DD, Cooke R (1980) Orientation of spin-labeled myosin heads in glycerinated muscle fibers. Biophys J 32:891–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toyoshima YY, Kron SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328:536–539

    Article  CAS  PubMed  Google Scholar 

  • Trybus KM (1994) Regulation of expressed truncated smooth muscle myosins: role of the essential light chain and tail length. J Biol Chem 269:20819–20822

    CAS  PubMed  Google Scholar 

  • Uyeda TQP, Kron SJ, Spudich JA (1990) Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin. J Mol Biol 214:699–710

    Article  CAS  PubMed  Google Scholar 

  • Uyeda TQP, Ruppel KM, Spudich JA (1994) Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin. Nature 368:567–569

    Article  CAS  PubMed  Google Scholar 

  • Uyeda TQP, Abramson PD, Spudich JA (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A 93:4459–4464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985a) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vale RD, Schnapp BJ, Reese TS, Sheetz MP (1985b) Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell 40:559–569

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk J, Furch M, Lafont C, Manstein DJ, Chaussepied P (1999) Functional characterization of the secondary actin binding site of myosin II. Biochemistry 38:15078–15085

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J 67:2422–2435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warrick HM, Spudich JA (1987) Myosin structure and function in cell motility. Annu Rev Cell Biol 3:379–421

    Article  CAS  PubMed  Google Scholar 

  • Warshaw DM, Guilford WH, Freyzon Y, Krementsova E, Palmiter KA, Tyska MJ, Baker JE, Trybus KM (2000) The light chain binding domain of expressed smooth muscle heavy meromyosin acts as a mechanical lever. J Biol Chem 275:37167–37172

    Article  CAS  PubMed  Google Scholar 

  • White HD, Rayment I (1993) Kinetic characterization of reductively methylated myosin subfragment I. Biochemistry 32:9859–9865

    Article  CAS  PubMed  Google Scholar 

  • White HD, Taylor EW (1976) Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry 15:5818–5826

    Article  CAS  PubMed  Google Scholar 

  • Whittaker M, Wilson-Kubalek EM, Smith JE, Faust L, Milligan RA, Sweeney HL (1995) A 35-Å movement of smooth muscle myosin on ADP release. Nature 378:748–751

    Article  CAS  PubMed  Google Scholar 

  • Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A 76:4498–4502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanagida T (1981) Angles of nucleotides bound to cross-bridges in glycerinated muscle fiber at various concentrations of ε-ATP, ε-ADP and ε-AMPPNP detected by polarized fluorescence. J Mol Biol 146:539–5650

    Article  CAS  PubMed  Google Scholar 

  • Yanagida T, Nakase M, Nishiyama K, Oosawa F (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307:58–60

    Article  CAS  PubMed  Google Scholar 

  • Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316:366–369

    Article  CAS  PubMed  Google Scholar 

  • Yanagida T, Esaki S, Iwane AH, Inoue Y, Ishijima A, Kitamura K, Tanaka H, Tokunaga M (2000) Single-motor mechanics and models of the myosin motor. Philos Trans R Soc Lond B Biol Sci 355:441–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yount RG (1993) Subfragment 1: the first crystalline motor. J Muscle Res Cell Motil 14:547–551

    Article  CAS  PubMed  Google Scholar 

  • Yount RG, Babcock D, Ballantyne W, Ojala D (1971) Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry 10:2484–2489

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Physiological Society

About this chapter

Cite this chapter

Rall, J.A. (2014). Molecular Mechanism of Force Production: From the Difficult 1980s to the Supercharged 1990s and Beyond. In: Mechanism of Muscular Contraction. Perspectives in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2007-5_9

Download citation

Publish with us

Policies and ethics