Skip to main content

1972 Cold Spring Harbor Symposia on Quantitative Biology: The Mechanism of Muscle Contraction—Problem Solved?

  • Chapter
  • First Online:
Mechanism of Muscular Contraction

Part of the book series: Perspectives in Physiology ((PHYSIOL))

  • 2126 Accesses

Abstract

In 1972 a “watershed” meeting took place in idyllic Cold Spring Harbor, New York. In some ways the meeting represented the end of the “classical” period of muscle investigation during which time the basic principles of muscle activation and contraction were established. The meeting also represented the opening of the contemporary era of muscle study before the explosion of molecular biology and structural biology would “super charge” the field. It also represented the beginning of many muscle workshop style meetings throughout the twentieth century and beyond. The meeting was held at the Cold Spring Harbor Laboratory and organized by Noble Laureate James D. Watson, the laboratory director, with the advice of Carolyn Cohen, John Gergely, Andrew Huxley, Hugh Huxley and Andrew Szent-Gyorgyi. In the forward to the published volume, Watson explained the purpose of the Cold Spring Harbors Symposia on Quantitative Biology and why muscle was “ripe” for selection as the 37th symposium.

Our symposium each year gives us the opportunity to seek an exploding phase of biology and to bring together most of the key practitioners. (Watson 1973. With permission Cold Spring Harbor Laboratory Press) J. D. Watson, Director, Cold Spring Harbor Laboratory 1973

J. D. Watson, Director, Cold Spring Harbor Laboratory 1973

By the early 1970s, the time of the Cold Spring Harbor Symposium on muscle contraction, it was generally accepted that the sliding filament moving crossbridge model was correct. (Huxley 1996. With permission Annual Reviews)

H. E. Huxley 1996

On the one hand was the view that the attachment-detachment cycle of A. F. Huxley (1957), plus the structural picture of H. E. Huxley (1969), plus the biochemical cycle of Lymn and Taylor (1971), plus the force-generating step of A. F. Huxley and Simmons (19171b) equaled the muscle problem solved. We found this astonishing, as we knew we were just scratching the surface of the problem. (Simmons 1992. With permission Cambridge University Press)

R. M. Simmons 1992

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Leonard Ornstein (1964) described the theoretical aspects of the gel electrophoresis technique and Baruch Joel (B.J.) Davis (1964) described the practical application for separating serum proteins. Shapiro et al. (1967) modified the technique by adding the anionic detergent sodium dodecyl sulfate (SDS) as a denaturing substance. Weber and Osborn (1969) at Harvard University showed that SDS gel electrophoresis could separate proteins according to molecular weight in the range of 11–220 kDa.

  2. 2.

    Other prominent bands in the gel of the myosin preparation that were found to exist in the myofibril included bands labeled B, F and H (Starr and Offer 1971). The B band was likely a M-line protein and the F band was attributed to the enzyme phosphofructokinase (Starr and Offer 1982). The H band with a molecular weight of 74 kDa was homologous to C-protein and found to exist in stripe 3 of the A band (see Footnote 3 below).

  3. 3.

    The precise number of C-protein stripes in the A band is dependent on muscle fiber type (Bennett et al. 1986). Three isoforms of C-protein are known to exist in adult muscle: fast skeletal, slow skeletal (originally described as X-protein) and cardiac. Separate genes encode each isoform. A related protein, H-protein, smaller than C-protein in skeletal muscle is localized to the third stripe from the M-line of the A band. It is interesting to note that C-protein does not occur in stripes 1 and 2. See Flashman et al. (2004) for a review.

  4. 4.

    Electron Tomography is a technique for obtaining detailed 3D structures of subcellular macromolecular objects. It is an extension of traditional transmission electron microscopy and uses a transmission electron microscope to collect data. In the process, a beam of electrons is passed through the sample at incremental degrees of rotation around the center of the target sample. This information is collected and used to assemble a three dimensional image of the target. Current resolutions of electron tomography systems are in the 5–20 nm range.

  5. 5.

    Ten years after Kenneth Bailey discovered tropomyosin in vertebrates, Bailey (1957) reported the characterization of what he considered a new form of tropomyosin in invertebrates. This “invertebrate tropomyosin” is now known as paramyosin. The name paramyosin was coined by Hall et al. (1946) earlier based on electron microscopic studies of invertebrate muscle fibrils since they had some properties similar to myosin but were yet also different. Paramyosin was found to be a two chain α helical coiled coil approximately 130 nm in length, 2 nm in diameter with a molecular weight of 220 kDa (Lowey et al. 1963). Paramyosin was first determined to be in the core of invertebrate thick filaments by Szent-Gyorgyi et al. (1971). It has similarities to the myosin rod. A paramyosin core allows invertebrate thick filaments to attain large diameters containing up to a seven stranded cross-bridge helix arrangement in striated scallop muscle (Squire 1986).

  6. 6.

    In solutions of low ionic strength LMM precipitates to form ordered aggregates called paracrystals. The paracrystals can assume different forms. Spindle shaped paracrystals were first studied in the electron microscope by Philpott and Szent-Gyorgyi (1954) who observed an axial repeat of about 40 nm. Other spindle-shaped paracrystals (tactoids) have been observed but with periodicities different from 43 nm. However, almost without exception the repeats correspond to an integral multiple of 14.3 nm. Paracrystal formation is an indicator of the ability of LMM or myosin rods to assemble properly. See Bennett (1981) for examples of paracrystals with periodicities of 43 or 14.3 nm.

  7. 7.

    Marcel Dubuisson (1903–1974) was the director of the laboratory of general biology at the University of Liege from 1949 to 1970 during which time he studied muscle proteins by electrophoresis methods. He wrote a monograph on muscle contraction in 1954. He had a long standing interest in marine biology and founded an aquarium at the university that opened in 1962 as the “Aquarium M. Dubuisson”. His most important influence was as the rector (president) of the University of Liege from 1953 to 1971 during which time he was a strong visionary for modernization of the university. He created the oceanographic research station (STARESO) in Corsica in 1970.

  8. 8.

    Aaron Klug (1926–) won the Nobel Prize in chemistry in 1982 for development of crystallographic electron microscopy and his structural elucidation of biologically important nucleic acid-protein complexes. Klug used methods of X-ray diffraction, electron microscopy and structural modeling to develop crystallographic electron microscopy in which a sequence of two-dimensional images of crystals taken from different angles are combined to produce three-dimensional (3D) images of the target.

  9. 9.

    Marcus Kress died tragically in a hiking accident before this paper was published.

  10. 10.

    In the acknowledgement section of their paper, MacLennan and Wong (1971) state that the name calsequestrin was suggested by their colleague Philip Seeman, a neuropharmacologist at the University of Toronto.

  11. 11.

    The name phospholamban was suggested by Arnold Katz’s wife Phyllis Katz who was educated in the classics. The term is derived from “phosphate” and a Greek work which means “to receive or to seize” (Katz 1998).

  12. 12.

    Various types of calcium channels have been discovered and characterized. The current classification includes: L-type, N-type, P/Q-type and R-types calcium channels. The evolution of this classification is reviewed by Richard W. Tsien and Curtis F. Barrett (2000–2012). Richard Tsien’s laboratory at Stanford University made major contributions in the understanding of calcium channel function.

References

  • Adelman MR, Taylor EW (1969) Further purification and characterization of slime mold myosin and slime mold actin. Biochemistry 8:4976–4988

    CAS  PubMed  Google Scholar 

  • Adelstein RS, Conti MA (1973) The characterization of contractile proteins from platelets and fibroblasts. Cold Spring Harb Symp Quant Biol 37:599–605

    CAS  Google Scholar 

  • Al-Amoudi A, Chang J-J, Leforestier A, McDowall A, Salamin LM, Norlen LPO, Richter K, Blanc NS, Studer D, Dubochet J (2004) Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–3588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Almers W, Fink R, Palade PT (1981) Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. J Physiol 312:177–207

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amos LA (1985) Structure of muscle filaments studied by electron microscopy. Annu Rev Biophys Biophys Chem 14:291–313

    CAS  PubMed  Google Scholar 

  • Ashton FT, Weisel J, Pepe FA (1992) The myosin filament XIV backbone structure. Biophys J 61:1513–1528

    PubMed Central  CAS  PubMed  Google Scholar 

  • Atkinson SJ, Stewart M (1991) Expression in Escherichia coli of fragments of the coiled-coil domain of rabbit myosin: influence of different regions of the molecules on aggregation and paracrystal formation. J Cell Sci 99:823–836

    CAS  PubMed  Google Scholar 

  • Bailey K (1946) Tropomyosin: a new asymmetric protein component of muscle. Nature 157:368–369

    CAS  PubMed  Google Scholar 

  • Bailey K (1957) Invertebrate tropomyosin. Biochim Biophys Acta 24:612–619

    CAS  PubMed  Google Scholar 

  • Bennett PM (1981) The structure of spindle-shaped paracrystals of light meromyosin. J Mol Biol 146:201–221

    CAS  PubMed  Google Scholar 

  • Bennett P, Craig R, Starr R, Offer G (1986) The ultrastructural location of C-protein, X-protein and H-protein in rabbit muscle. J Muscle Res Cell Motil 7:550–567

    CAS  PubMed  Google Scholar 

  • Benzonana G, Capony J-P, Pechere J-F (1972) The binding of calcium to muscular parvalbumins. Biochim Biophys Acta 278:110–116

    CAS  PubMed  Google Scholar 

  • Bettex-Galland M, Clemetson KJ (2005) First isolation of actomyosin from a non-muscle cell: first isolated platelet protein. J Thrombosis Haemost 3:834–839

    CAS  Google Scholar 

  • Bettex-Galland M, Luscher EF (1959) Extraction of an actomyosin-like protein from human thrombocytes. Nature 184:276–277

    CAS  PubMed  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    CAS  PubMed  Google Scholar 

  • Bray D (1973) Cytoplasmic actin: a comparative study. Cold Spring Harb Symp Quant Biol 37:567–571

    CAS  Google Scholar 

  • Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland, New York

    Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238:97–101

    CAS  PubMed  Google Scholar 

  • Bremel RD, Murray JM, Weber A (1973) Manifestations of cooperative behavior in the regulated actin filament during actin-activated ATP hydrolysis in the presence of calcium. Cold Spring Harb Symp Quant Biol 37:267–275

    CAS  Google Scholar 

  • Brenner B, Schoenberg M, Chalovich JM, Greene LE, Eisenberg E (1982) Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci U S A 79:7288–7291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    CAS  PubMed  Google Scholar 

  • Brown JH, Kim K-H, Jun G, Greenfield NJ, Dominguez R, Volkmann N, Hitchcock-DeGregori SE, Cohen C (2001) Deciphering the design of the tropomyosin molecule. Proc Natl Acad Sci U S A 98:8496–8501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caspar DLD, Cohen C, Longley W (1969) Tropomyosin: crystal structure, polymorphism and molecular interactions. J Mol Biol 41:87–107

    CAS  PubMed  Google Scholar 

  • Chalovich JM (2002) Regulation of striated muscle contraction: a discussion. J Muscle Res Cell Motil 23:353–361

    CAS  PubMed  Google Scholar 

  • Chalovich JM, Eisenberg E (1982) Inhibition of actomyosin ATPase activity by troponin.tropomyosin without blocking the binding of myosin to actin. J Biol Chem 257:2432–2437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chalovich JM, Chock PB, Eisenberg E (1981) Mechanism of action of tropomyosin*tropomyosin: inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin. J Biol Chem 256:575–578

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chantler P (1982) Retreats from the steric blocking of muscle contraction. Nature 298:120–121

    CAS  PubMed  Google Scholar 

  • Cohen C (1975) The protein switch of muscle contraction. Sci Am 233:36–45

    CAS  PubMed  Google Scholar 

  • Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4:E127–E130

    CAS  PubMed  Google Scholar 

  • Cohen C, Holmes KC (1963) X-ray diffraction evidence for α-helical coiled-coils in native muscle. J Mol Biol 6:423–432

    CAS  PubMed  Google Scholar 

  • Cohen C, Longley W (1966) Tropomyosin paracrystals formed by divalent cations. Science 152:794–796

    CAS  PubMed  Google Scholar 

  • Cohen C, Szent-Gyorgyi AG (1957) Optical rotation and helical polypeptide chain configuration in α-proteins. J Am Chem Soc 79:248

    CAS  Google Scholar 

  • Cohen C, Caspar DLD, Johnson JP, Nauss K, Margossian SS, Parry DAD (1973) Tropomyosin-troponin assembly. Cold Spring Harb Symp Quant Biol 37:287–297

    CAS  Google Scholar 

  • Collins JH, Potter JD, Horn MJ, Wilshire G, Jackman N (1973) The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett 36:268–272

    CAS  PubMed  Google Scholar 

  • Costantin LL, Franzini-Armstrong C, Podolsky RJ (1965) Localization of calcium-accumulating structures in striated muscle fibers. Science 147:158–160

    CAS  PubMed  Google Scholar 

  • Craig R (1986) The structure of the contractile filaments. In: Engel AG, Banker BQ (eds) Myology. McGraw-Hill, New York, pp 73–123

    Google Scholar 

  • Craig R, Offer G (1976) The location of C-protein in rabbit skeletal muscle. Philos Trans R Soc Lond B Biol Sci 192:451–461

    CAS  Google Scholar 

  • Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Cryst 6:689–697

    CAS  Google Scholar 

  • Cummins P, Perry SV (1973) The subunits and biological activity of polymorphic forms of tropomoysin. Biochem J 133:765–777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23:2113–2118

    CAS  PubMed  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. 2, Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427

    CAS  PubMed  Google Scholar 

  • de Meis L, Vianna AL (1979) Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 48:275–292

    PubMed  Google Scholar 

  • DeRosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134

    CAS  Google Scholar 

  • Dolphin AC (2006) A short history of voltage-gated calcium channels. Br J Pharmacol 147:S56–S62

    PubMed Central  CAS  PubMed  Google Scholar 

  • Draper MH, Hodge AJ (1949) Studies on muscle with the electron microscope. 1. The ultrastructure of toad striated muscle. Austral J Exptl Biol Med Sci 27:465–504

    Google Scholar 

  • Dubuisson M (1954) Muscular contraction. Charles C. Thomas, Springfield

    Google Scholar 

  • Ebashi S, Kodama A (1966) Interaction of troponin with F-actin in the presence of tropomyosin. J Biochem 59:425–426

    CAS  PubMed  Google Scholar 

  • Ebashi S, Endo M, Ohtsuki I (1969) Control of muscle contraction. Q Rev Biophys 2:351–384

    CAS  PubMed  Google Scholar 

  • Egelman EH, DeRosier DJ (1983) A model for F-actin derived from image analysis of isolated filaments. J Mol Biol 166:623–629

    CAS  Google Scholar 

  • Eisenberg E, Kielley WW (1973) Evidence for a refractory state of heavy meromyosin and subfragment-1 unable to bind to actin in the presence of ATP. Cold Spring Harb Symp Quant Biol 37:145–152

    CAS  Google Scholar 

  • Eisenberg BR, Kuda AM (1975) Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of the adult guinea pig. J Ultrastruct Res 51:176–187

    CAS  PubMed  Google Scholar 

  • Elzinga M, Collins JH (1973) The amino acid sequence of rabbit skeletal muscle actin. Cold Spring Harb Symp Quant Biol 37:1–7

    CAS  Google Scholar 

  • Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    CAS  PubMed  Google Scholar 

  • Endo M, Nonomura Y, Masaki T, Ohtsuki I, Ebashi S (1966) Localization of native tropomyosin in relation to striation patterns. J Biochem 60:605–608

    CAS  Google Scholar 

  • Enfield DL, Ericsson LH, Blum HE, Fischer EH, Neurath H (1975) Amino-acid sequence of parvalbumin from rabbit skeletal muscle. Proc Natl Acad Sci U S A 72:1309–1313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1975) Contractions induced by calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249:469–495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fairhurst AS, Hasselbach W (1970) Calcium efflux from a heavy sarcotubular fraction: effects of ryanodine, caffeine and magnesium. Eur J Biochem 13:504–509

    CAS  PubMed  Google Scholar 

  • Ferguson DG, Schwartz HW, Franzini-Armstrong C (1984) Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary-shadowing study. J Cell Biol 99:1735–1742

    CAS  PubMed  Google Scholar 

  • Fischer EH (1992) Nobel lecture: protein phosphorylation and cellular regulation. nobelprize.org

  • Flashman E, Redwood C, Moolman-Smook J, Watkins H (2004) Cardiac myosin binding protein C: its role in physiology and disease. Circ Res 94:1279–1289

    CAS  PubMed  Google Scholar 

  • Fleckenstein A (1983) History of calcium antagonism. Circ Res 52(Suppl 1):3–16

    CAS  Google Scholar 

  • Fleischer S (2008) Personal recollections on the discovery of the ryanodine receptors of muscle. Biochem Biophys Res Commun 369:195–207

    CAS  PubMed  Google Scholar 

  • Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EAM (1985) Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci U S A 82:7256–7259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flockerzi V, Oeken H-J, Hofmann F, Pelzer D, Cavalie A, Trautwein W (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 323:66–68

    CAS  PubMed  Google Scholar 

  • Fosset M, Jaimovich E, Delpont E, Lazdunski M (1983) [3H]Nitrendipine receptors in skeletal muscle. Properties and preferential localization in transverse tubules. J Biol Chem 258:6086–6092

    CAS  PubMed  Google Scholar 

  • Frank G, Weeds AG (1974) The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur J Biochem 44:317–334

    CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C (1970) Studies of the triad. I. Structures of the junction in frog twitch fibers. J Cell Biol 47:488–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frearson N, Focant BWW, Perry SV (1976) Phosphorylation of a light chain component of myosin from smooth muscle. FEBS Lett 63:27–32

    CAS  PubMed  Google Scholar 

  • Froehlich JP, Taylor EW (1975) Transient state kinetic studies of sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 250:2013–2021

    CAS  PubMed  Google Scholar 

  • Gerday C, Gillis JM (1976) The possible role of parvalbumins in the control of contractions. J Physiol 258:96–97P

    Google Scholar 

  • Gilbert C, Kretzschmar KM, Wilkie DR (1973) Heat, work, and phosphocreatine splitting during muscular contraction. Cold Spring Harb Symp Quant Biol 37:613–618

    CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  PubMed  Google Scholar 

  • Greaser ML, Gergely J (1971) Reconstitution of troponin activity from three protein components. J Biol Chem 246:4226–4233

    CAS  PubMed  Google Scholar 

  • Greaser ML, Gergely J (1973) Purification and properties of the components from troponin. J Biol Chem 248:2125–2133

    CAS  PubMed  Google Scholar 

  • Greaser ML, Yamaguchi M, Brekke C, Potter J, Gergely J (1973) Troponin subunits and their interactions. Cold Spring Harb Symp Quant Biol 37:235–244

    CAS  Google Scholar 

  • Hall CE, Jakus MA, Schmitt FO (1946) An investigation of cross striations and myosin filaments in muscle. Biol Bull 90:32–50

    CAS  PubMed  Google Scholar 

  • Hamoir G, Konosu S (1965) Carp myogens of white and red muscles. General composition and isolation of low-molecular-weight components of abnormal amino acid composition. Biochem J 96:85–97

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanson J, Lowy J (1963) The structure of F-actin and actin filaments isolated from muscle. J Mol Biol 6:46–60

    CAS  Google Scholar 

  • Hanson J, Lowy J (1964) The structure of actin filaments and the origin of the axial periodicity in the I-substance of vertebrate striated muscle. Philos Trans R Soc Lond B Biol Sci 160:449–460

    CAS  Google Scholar 

  • Hanson J, Lednev V, O’Brien EJ, Bennett PM (1973) Structure of the actin-containing filaments in vertebrate skeletal muscle. Cold Spring Harb Symp Quant Biol 37:311–318

    CAS  Google Scholar 

  • Harrington WF, Burk M, Barton JS (1973) Association of myosin to form contractile systems. Cold Spring Harb Symp Quant Biol 37:77–85

    CAS  Google Scholar 

  • Hartshorne DJ, Mueller H (1968) Fractionation of troponin into two distinct proteins. Biochem Biophys Res Commun 31:647–653

    CAS  PubMed  Google Scholar 

  • Haselgrove JC (1973) X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harb Symp Quant Biol 37:341–351

    CAS  Google Scholar 

  • Hasselbach W (1978) The reversibility of the sarcoplasmic calcium pump. Biochim Biophys Acta 515:23–53

    CAS  PubMed  Google Scholar 

  • Hatano S, Ohnuma J (1970) Purification and characterization of myosin A from the myxomycete plasmodium. Biochim Biophys Acta 205:110–120

    CAS  PubMed  Google Scholar 

  • Hatano S, Oosawa F (1966) Isolation and characterization of plasmodium actin. Biochim Biophys Acta 127:488–498

    CAS  PubMed  Google Scholar 

  • Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscle. Proc Natl Acad Sci U S A 79:7243–7247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henrotte JG (1955) A crystalline component of carp myogen precipitating at high ionic strength. Nature 176:1221

    CAS  Google Scholar 

  • Hodges RS, Sodek J, Smillie LB, Jurasek L (1973) Tropomyosin: amino acid sequence and coiled-coil structure. Cold Spring Harb Symp Quant Biol 37:299–310

    Google Scholar 

  • Hoffmann-Berling H (1954) Adenosintriphosphat als betriebsstoff von zellbewegungen. Biochim Biophys Acta 14:182–194

    CAS  PubMed  Google Scholar 

  • Hoffmann-Berling H (1960) Other mechanisms of producing movement. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol 2. Academic, New York, pp 341–370

    Google Scholar 

  • Holmes KC (1996) Muscle proteins- their actions and interactions. Curr Opin Struct Biol 6:781–789

    CAS  PubMed  Google Scholar 

  • Holmes KC (2010) 50 years of fiber diffraction. J Struct Biol 170:184–191

    CAS  PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebbard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    CAS  PubMed  Google Scholar 

  • Huxley AF, Simmons RM (1973) Mechanical transients and the origin of muscular force. Cold Spring Harb Symp Quant Biol 37:669–680

    CAS  Google Scholar 

  • Huxley HE (1957) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3:631–648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    CAS  PubMed  Google Scholar 

  • Huxley HE (1967) Recent X-ray diffraction and electron microscope studies of striated muscle. J Gen Physiol 50(suppl 6):71–85

    PubMed Central  PubMed  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366

    CAS  PubMed  Google Scholar 

  • Huxley HE (1971) Structural changes during muscle contraction. Biochem J 125:85P

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huxley HE (1973a) Structural changes in the actin- and myosin-containing filaments during contraction. Cold Spring Harb Symp Quant Biol 37:361–376

    CAS  Google Scholar 

  • Huxley HE (1973b) Muscle 1972: progress and problems. Cold Spring Harb Symp Quant Biol 37:689–693

    CAS  Google Scholar 

  • Huxley HE (1996) A personal view of muscle and motility mechanisms. Annu Rev Physiol 58:1–29

    CAS  PubMed  Google Scholar 

  • Huxley HE, Brown W (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 30:383–434

    CAS  PubMed  Google Scholar 

  • Huxley HE, Holmes KC (1997) Development of synchrotron radiation as a high-intensity Source for X-ray diffraction. J Synchrotron Radiat 4:366–379

    CAS  PubMed  Google Scholar 

  • Hymel L, Inui M, Fleischer S, Schindler H (1988) Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci U S A 85:441–445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ikemoto N (1975) Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J Biol Chem 250:7219–7224

    CAS  PubMed  Google Scholar 

  • Ikemoto N (1976) Behavior of the Ca2+ transport sites linked with the phosphorylation reaction of ATPase purified from the sarcoplasmic reticulum. J Biol Chem 251:7275–7277

    CAS  PubMed  Google Scholar 

  • Imagawa T, Smith JS, Coronado R, Campbell KP (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem 262:16636–16643

    CAS  PubMed  Google Scholar 

  • Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747

    CAS  PubMed  Google Scholar 

  • Ishikawa H, Bischoff R, Holtzer H (1969) Formation of arrowhead complexes with heavy meromyosin in a variety of cell-types. J Cell Biol 43:312–328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeacocke SA, England PJ (1980) Phosphorylation of a myofibrillar protein of Mr 150,000 in perfused rat heart, and the tentative identification of this as C-protein. FEBS Lett 122:129–132

    CAS  PubMed  Google Scholar 

  • Jenden DJ, Fairhurst AS (1959) The pharmacology of ryanodine. Pharmacol Rev 21:1–25

    Google Scholar 

  • Johnson JD, Charlton SC, Potter JD (1979) A fluorescence stopped flow analysis of Ca2+ exchange with Troponin C. J Biol Chem 254:3497–3502

    CAS  PubMed  Google Scholar 

  • Jorgensen AO, Kalnins V, MacLennan DH (1979) Localization of sarcoplasmic reticulum proteins in rate skeletal muscle by immunofluorescence. J Cell Biol 80:372–384

    CAS  PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of actin: DNAase 1 complex. Nature 347:3–44

    Google Scholar 

  • Kachur TM, Pilgrim DB (2008) Myosin assembly, maintenance and degradation in muscle: role of the chaperone UNC-45 in myosin thick filament dynamics. Int J Mol Sci 9:186–1875

    Google Scholar 

  • Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol 25:593–620

    CAS  PubMed  Google Scholar 

  • Katz AM (1998) Discovery of phospholamban. A personal history. Ann N Y Acad Sci 853:9–19

    CAS  PubMed  Google Scholar 

  • Kendrick-Jones J, Lehman W, Szent-Gyorgyi AG (1970) Regulation in molluscan muscles. J Mol Biol 54:313–326

    CAS  PubMed  Google Scholar 

  • Kendrick-Jones J, Szentkiralyi EM, Szent-Gyorgyi AG (1973) Myosin-linked regulatory systems: the role of the light chains. Cold Spring Harb Symp Quant Biol 37:47–53

    CAS  Google Scholar 

  • Kensler RW, Levine RJC (1982) An electron microscopic and optical diffraction analysis of the structure of Limulus telson muscle thick filaments. J Cell Biol 92:443–451

    CAS  PubMed  Google Scholar 

  • Kensler RW, Stewart M (1983) Frog skeletal muscle thick filaments are three-stranded. J Cell Biol 96:1797–1802

    CAS  PubMed  Google Scholar 

  • Kirchberger MA, Tada M, Repke DI, Katz AM (1972) Cyclic adenosine 3′,5′-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol 4:673–680

    CAS  PubMed  Google Scholar 

  • Konosu S, Hamoir G, Pechere J-F (1965) Carp myogens of white and red muscle. Properties and amino acid composition of the main low molecular-weight components of white muscle. Biochem J 96:98–112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koretz JF, Hunt T, Taylor EW (1973) Studies on the mechanism of myosin and actomyosin ATPase. Cold Spring Harb Symp Quant Biol 37:179–184

    CAS  Google Scholar 

  • Korn ED (2004) The discovery of unconventional myosins: serendipity or luck? J Biol Chem 279:8517–8525

    CAS  PubMed  Google Scholar 

  • Krebs EG (1992) Protein phosphorylation and cellular regulation, I. December 8, 1992. nobleprize.org

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    CAS  PubMed  Google Scholar 

  • Kress M, Huxley HE, Faruqi AR, Hendrix J (1986) Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J Mol Biol 188:325–342

    CAS  PubMed  Google Scholar 

  • Kretsinger RH, Barry CD (1975) The predicted structure of the calcium binding component of troponin. Biochim Biophys Acta 405:40–52

    CAS  PubMed  Google Scholar 

  • Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326

    CAS  PubMed  Google Scholar 

  • Kretsinger RH, Dangelat D, Bryan RF (1971) Crystal data for low molecular weight albumins of carp. J Mol Biol 59:213–214

    CAS  PubMed  Google Scholar 

  • Lai FA, Erickson HP, Rousseau E, Liu Q-Y, Meissner G (1988) Purification and reconstitution of the calcium release channel of skeletal muscle. Nature 331:315–319

    CAS  PubMed  Google Scholar 

  • Lehman W, Craig R (2004) The structure of the vertebrate striated muscle thin filament: a tribute to the contributions of Jean Hanson. J Muscle Res Cell Motil 25:455–466

    PubMed  Google Scholar 

  • Lehman W, Szent-Gyorgyi AG (1975) Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol 66:1–30

    CAS  PubMed  Google Scholar 

  • Lehman W, Kendrick-Jones J, Szent-Gyorgyi AG (1973) Myosin-linked regulatory systems: comparative studies. Cold Spring Harb Symp Quant Biol 37:319–330

    CAS  Google Scholar 

  • Lehman W, Craig R, Vibert P (1994) Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368:65–67

    CAS  PubMed  Google Scholar 

  • Lehrer SS, Morris EP (1982) Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase. J Biol Chem 257:8073–8080

    CAS  PubMed  Google Scholar 

  • Locker RH, Hagyard CJ (1967) Variations in the small subunits of different myosins. Arch Biochem Biophys 122:521–522

    CAS  PubMed  Google Scholar 

  • Lowey S, Holt JC (1973) An immunochemical approach to the interaction of light and heavy chains in myosin. Cold Spring Harb Symp Quant Biol 37:19–28

    CAS  Google Scholar 

  • Lowey S, Kucera J, Holtzer A (1963) On the structure of the paramyosin molecule. J Mol Biol 7:234–244

    CAS  PubMed  Google Scholar 

  • Lowy J, Vibert PJ (1973) Studies of the low-angle X-ray pattern of a molluscan smooth muscle during tonic contraction and rigor. Cold Spring Harb Symp Quant Biol 37:353–359

    CAS  Google Scholar 

  • Luther PK, Winkler H, Taylor K, Zoghbi ME, Craig R, Padron R, Squire JM, Liu J (2011) Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proc Natl Acad Sci U S A 108:11423–11428

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacLennan DH (1970) Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 245:4508–4518

    CAS  PubMed  Google Scholar 

  • MacLennan DH, Wong PTS (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A 68:1231–1235

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacLennan DH, Yip CC, Iles GH, Seeman P (1973) Isolation of sarcoplasmic reticulum proteins. Cold Spring Harb Symp Quant Biol 37:469–477

    CAS  Google Scholar 

  • Martonosi AN, Beeler TJ (1983) Mechanisms of Ca2+ transport by sarcoplasmic reticulum. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology: section 10, skeletal muscle. American Physiological Society, Bethesda, pp 417–485

    Google Scholar 

  • Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S, Ohashi K, Murakami F, Handa S, Eguchi G (1977) Connectin, an elastic protein of muscle. Characterization and function. J Biochem 82:317–337

    CAS  PubMed  Google Scholar 

  • Masaki T, Takaiti O, Ebashi S (1968) “M-substance”, a new protein constituting the M-line of myofibrils. J Biochem 64:909–910

    CAS  PubMed  Google Scholar 

  • McKillop DFA, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701

    PubMed Central  CAS  PubMed  Google Scholar 

  • McLachlan AD, Karn J (1982) Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 299:226–231

    CAS  PubMed  Google Scholar 

  • McLachlan AD, Stewart M (1976a) The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 103:271–298

    CAS  PubMed  Google Scholar 

  • McLachlan AD, Stewart M (1976b) The troponin binding region of tropomyosin. Evidence for a site near residues 197 to 217. J Mol Biol 106:1017–1022

    CAS  PubMed  Google Scholar 

  • Meissner G (1975) Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim Biophys Acta 389:51–68

    CAS  PubMed  Google Scholar 

  • Milligan RA, Whittaker M, Safer D (1990) Molecular structure of F-actin and location of surface binding sites. Nature 348:217–221

    CAS  PubMed  Google Scholar 

  • Moore PB, Huxley HE, DeRosier DJ (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50:279–295

    CAS  PubMed  Google Scholar 

  • Moos C (1973) Discussion: interaction of C-protein with myosin and light meromyosin. Cold Spring Harb Symp Quant Biol 37:93–95

    CAS  Google Scholar 

  • Moos C, Mason CM, Besterman JM, Feng I-NM, Dubin JH (1978) The binding of skeletal muscle C-protein to F-actin, and its relation to the interaction of actin with myosin subfragment-1. J Mol Biol 124:571–586

    CAS  PubMed  Google Scholar 

  • O’brien EJ, Bennett PM, Hanson J (1971) Optical diffraction studies of myofibrillar structure. Philos Trans R Soc Lond B Biol Sci 261:201–208

    PubMed  Google Scholar 

  • Offer G (1973) C-protein and the periodicity in the thick filaments of vertebrate skeletal muscle. Cold Spring Harb Symp Quant Biol 37:87–93

    CAS  Google Scholar 

  • Offer G (1974) The molecular basis of muscular contraction. In: Bull AT, Lagnado JR, Thomas JQ, Tipton KF (eds) Companion to biochemistry. Longman, London, pp 623–671

    Google Scholar 

  • Offer G, Moos C, Starr R (1973) A new protein of the thick filaments of vertebrate skeletal myofibrils: extraction, purification and characterization. J Mol Biol 74:653–676

    CAS  PubMed  Google Scholar 

  • Ohtsuki I, Masaki T, Nonomura Y, Ebashi S (1967) Periodic distribution of troponin along the thin filament. J Biochem 61:817–819

    CAS  Google Scholar 

  • Ornstein L (1964) Disc electrophoresis. 1, Background and theory. Ann N Y Acad Sci 121:321–349

    CAS  PubMed  Google Scholar 

  • Parry DAD (1981) Structure of rabbit skeletal myosin. Analysis of the amino acid sequences of two fragments from the rod region. J Mol Biol 153:459–464

    CAS  PubMed  Google Scholar 

  • Parry DAD, Squire JM (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75:33–55

    CAS  PubMed  Google Scholar 

  • Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configuration of the polypeptide chain. Proc Natl Acad Sci U S A 37:205–211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pechere J-F (1968) Muscular parvalbumins as homologous proteins. Comp Biochem Physiol 24:289–295

    CAS  PubMed  Google Scholar 

  • Pechere J-F, Capony J-P, Ryden L (1971) The primary structure of the major parvalbumin from Hake muscle. Isolation and general properties of the protein. Eur J Biochem 23:421–428

    CAS  PubMed  Google Scholar 

  • Pechere J-F, Derancourt J, Haiech J (1977) The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal-muscle. FEBS Lett 75111–114

    Google Scholar 

  • Pepe FA (1967) The myosin filament. I. Structural organization from antibody-staining in electron microscopy. J Mol Biol 27:203–225

    CAS  PubMed  Google Scholar 

  • Pepe FA (1973) The myosin filament: immunochemical and ultrastructural approaches to molecular organization. Cold Spring Harb Symp Quant Biol 37:97–108

    CAS  Google Scholar 

  • Pepe FA, Drucker B (1975) The myosin filament. III. C-protein. J Mol Biol 88:609–617

    Google Scholar 

  • Permyakov EA, Kretsinger RH (2011) Calcium binding proteins. Wiley, Hoboken

    Google Scholar 

  • Perrie WT, Smillie LB, Perry SV (1973a) A phosphorylated light chain component of myosin from skeletal muscle. Cold Spring Harb Symp Quant Biol 37:17–18

    CAS  Google Scholar 

  • Perrie WT, Smillie LB, Perry SV (1973b) A phosphorylated light-chain component of myosin from skeletal muscle. Biochem J 135:151–164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pessah IN, Francini AO, Scales DJ, Waterhouse AL, Casida JE (1986) Calcium-ryanodine receptor complex: solubilization and partial characterization from skeletal muscle junctional sarcoplasmic reticulum vesicles. J Biol Chem 261:8643–8648

    CAS  PubMed  Google Scholar 

  • Phillips GN, Filler JP, Cohen C (1986) Tropomyosin crystal structure and muscle regulation. J Mol Biol 192:111–131

    CAS  PubMed  Google Scholar 

  • Philpott DE, Szent-Gyorgyi AG (1954) The structure of light-meromyosin: an electron microscopic study. Biochim Biophys Acta 15:165–173

    CAS  PubMed  Google Scholar 

  • Pollard TD, Korn ED (1973a) The “contractile” proteins of Acanthamoeba castellanii. Cold Spring Harb Symp Quant Biol 37:573–583

    CAS  Google Scholar 

  • Pollard TD, Korn ED (1973b) Acanthamoeba myosin: I. Isolation from Acanthamoeba castellanii of an enzyme similar to myosin. J Biol Chem 248:4682–4690

    CAS  PubMed  Google Scholar 

  • Pollard TD, Korn ED (1973c) Acanthamoeba myosin: II. Interaction with actin and with a new cofactor protein required for activation of Mg2+ adenosine triphosphatase activity. J Biol Chem 248:4691–4697

    CAS  PubMed  Google Scholar 

  • Poole KJV, Lorenz M, Evans G, Rosenbaum G, Pirani A, Craig R, Tobacman LS, Lehman W, Holmes KC (2006) A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 155:273–284

    CAS  PubMed  Google Scholar 

  • Potter JD, Gergely J (1974) Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13:2697–2703

    CAS  PubMed  Google Scholar 

  • Potter JD, Gergely J (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 250:4628–4633

    CAS  PubMed  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan R (1993a) Structure of the actin–myosin complex and its implications for muscle contraction. Science 261:58–65

    CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993b) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    CAS  PubMed  Google Scholar 

  • Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    CAS  PubMed  Google Scholar 

  • Rosemblatt M, Hidalgo C, Vergara C, Ikemoto N (1981) Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem 256:8140–8148

    CAS  PubMed  Google Scholar 

  • Saito A, Seiler S, Chu A, Fleischer S (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from skeletal muscle. J Cell Biol 99:875–885

    CAS  PubMed  Google Scholar 

  • Sanchez JA, Stefani E (1978) Inward calcium current in twitch muscle fibres of the frog. J Physiol 283197–209

    Google Scholar 

  • Schneider MF, Chandler WK (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242:244–246

    CAS  PubMed  Google Scholar 

  • Schwartz LM, McCleskey EW, Almers W (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314:747–751

    CAS  PubMed  Google Scholar 

  • Sellers JR (1999) Myosins, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Seymour J, O’Brien EJ (1980) The position of tropomyosin in muscle thin filaments. Nature 83:680–682

    Google Scholar 

  • Shapiro A, Vinuela E, Maizel JV (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28:815–820

    CAS  PubMed  Google Scholar 

  • Sheterline P, Clayton J, Sparrow JC (1998) Actin, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Simmons RM (1992) A. F. Huxley’s research on muscle. In: Simmons RM (ed) Muscular contraction. Cambridge University Press, Cambridge, pp 19–42

    Google Scholar 

  • Simmons RM, Szent-Gyorgyi AG (1985) A mechanical study of regulation in the striated adductor muscle of the scallop. J Physiol 358:47–64

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sobieszek A (1977) Vertebrate smooth muscle myosin. In: Stephens NL (ed) The biochemistry of smooth muscle. University Park Press, Baltimore, pp 413–443

    Google Scholar 

  • Sohn RL, Vikstrom KL, Strauss M, Cohen C, Szent-Gyorgyi AG, Leinwand LA (1997) A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. J Mol Biol 266:317–330

    CAS  PubMed  Google Scholar 

  • Spudich JA (1973) Effects of cytochalasin B on actin filaments. Cold Spring Harb Symp Quant Biol 37:585–593

    CAS  Google Scholar 

  • Spudich JA, Huxley HE, Finch JT (1972) Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J Mol Biol 72:619–632

    CAS  PubMed  Google Scholar 

  • Squire JM (1971) General model for the structure of all myosin-containing filaments. Nature 233:457–462

    CAS  PubMed  Google Scholar 

  • Squire JM (1972) General model of myosin filament structure. II. Myosin filaments and cross-bridge interactions in vertebrate striated and insect flight muscle. J Mol Biol 72:125–138

    CAS  PubMed  Google Scholar 

  • Squire JM (1981) The structural basis of muscular contraction. Plenum, New York

    Google Scholar 

  • Squire JM (1986) Muscle: design, diversity, and disease. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Squire JM (1994) The actomyosin interaction—shedding light on structural events: ‘Plus ca change, plus c’est la meme chose’. J Muscle Res Cell Motil 15:227–231

    CAS  PubMed  Google Scholar 

  • Starr R, Offer G (1971) Polypeptide chains of intermediate molecular weight in myosin preparations. FEBS Lett 15:40–44

    CAS  PubMed  Google Scholar 

  • Starr R, Offer G (1978) The interaction of C-protein with heavy meromyosin and subfragment-2. Biochem J 171:813–816

    PubMed Central  CAS  PubMed  Google Scholar 

  • Starr R, Offer G (1982) Preparation of C-protein, H-protein, X-protein and phosphofructokinase. In: Frederiksen DW, Cunningham LW (eds) Methods in enzymology, vol 85, Part B, Structural and contractile proteins. Academic, New York, pp 130–138

    Google Scholar 

  • Stone D, Smillie LB (1978) The amino acid sequence of rabbit skeletal α-tropomyosin. The NH2-terminal half and complete sequence. J Biol Chem 253:1137–1144

    Google Scholar 

  • Stull JT, Kamm KE, Vandenboom R (2011) Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 510:120–128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sumbilla C, Cavagna M, Zhong L, Ma H, Lewis D, Farrance I, Inesi G (1999) Comparison of SERCA1 and SERCA2a expressed in COS-1 cells and cardiac myocytes. Am J Physiol 277:H2381–H2391

    CAS  PubMed  Google Scholar 

  • Szent-Gyorgyi AG (1975) Introductory remarks. In: Inoue S, Stephens RE (eds) Molecules and cell movement, vol 30, Society of General Physiologists. Raven, New York, pp 335–338

    Google Scholar 

  • Szent-Gyorgyi AG (2007) Regulation by myosin: how calcium regulates some myosins: past and present. Adv Exp Med Biol 592:253–264

    PubMed  Google Scholar 

  • Szent-Gyorgyi AG, Cohen C, Kendrick-Jones J (1971) Paramyosin and the filaments of molluscan “catch” muscles. II. Native filaments: isolation and characterization. J Mol Biol 56:239–258

    CAS  PubMed  Google Scholar 

  • Szent-Gyorgyi AG, Szentkiralyi EM, Kendrick-Jones J (1973) The light chains of scallop myosin as regulatory subunits. J Mol Biol 74:179–203

    CAS  PubMed  Google Scholar 

  • Taylor EW (2001) 1999 E. B. Wilson lecture: the cell as molecular machine. Mol Biol Cell 12:251–254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor KA, Amos LA (1981) A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments. J Mol Biol 147:297–324

    CAS  PubMed  Google Scholar 

  • Tsien RW, Barrett CF (2000–2012) A brief history of calcium channel discovery. NCBI Bookshelf ID: NBK6465. National Library of Medicine, National Institutes of Health, Madame Curie Bioscience Database [Internet]. Landes Bioscience, Austin

    Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266:8–14

    CAS  PubMed  Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci 76:3698–3702

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watson JD (1973) Foreword. Cold Spring Harb Symp Quant Biol 37:xvii

    Google Scholar 

  • Weber HH (1958) The motility of muscle and cells. Harvard University Press, Cambridge

    Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    CAS  PubMed  Google Scholar 

  • Weeds AG, Frank G (1973) Structural studies on the light chains of myosin. Cold Spring Harb Symp Quant Biol 37:9–14

    CAS  Google Scholar 

  • Weisberg A, Winegrad S (1996) Alteration of myosin cross bridges by phosphorylation of myosin-binding protein C in cardiac muscle. Proc Natl Acad Sci 93:8999–9003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Woledge RC (1973) In vitro calorimetric studies relating to the interpretation of muscle heat experiments. Cold Spring Harb Symp Quant Biol 37:629–634

    CAS  Google Scholar 

  • Woodhead JL, Zhao F-Q, Craig R, Egelman EH, Alamo L, Padron R (2005) Atomic model of a myosin filament in the relaxed state. Nature 436:1195–1199

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Physiological Society

About this chapter

Cite this chapter

Rall, J.A. (2014). 1972 Cold Spring Harbor Symposia on Quantitative Biology: The Mechanism of Muscle Contraction—Problem Solved?. In: Mechanism of Muscular Contraction. Perspectives in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2007-5_6

Download citation

Publish with us

Policies and ethics