Skip to main content

Smart Drug Delivery Systems

  • Chapter
  • First Online:
Drug Delivery
  • 1894 Accesses

Abstract

In previous chapters, we identified the nature of the pharmacokinetic profile for a series of controlled-release systems. The zero-order release represented a simple, idealized, gradual release response, which allowed for a predicted dosage to be delivered over a predictable time regime. As we shifted our discussion to encapsulated and targeted systems, it became apparent that the zero-order release would be less relevant since the design strategy for these systems is to prevent interaction between the drug and physiological environment until the drug reaches the tissue target. Upon reaching the target, the system is either consumed or degraded in order to release the drug dosage form into the cellular environment. An important question that arises at this point in the discussion is

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Shimizu, K., Fujita, H., & Nagamori, E. (2010). Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering. Biotechnology and Bioengineering, 106(2), 303–310. (b) Twaites, B. R., de Las Heras Alarcón, C., Lavigne, M., Saulnier, A., Pennadam, S. S., Cunliffe, D., & Alexander, C. (2005). Thermoresponsive polymers as gene delivery vectors: Cell viability, DNA transport and transfection studies. Journal of Controlled Release: Official Journal of the Controlled Release Society, 108(2–3), 472–483.

    Google Scholar 

  2. Kaul, R. H. (Ed.). (2000). Aqueous two-phase systems: Methods and protocols (p. 440). New York: Humana Press.

    Google Scholar 

  3. Cahn, J. W. (1961). On spinodal decomposition. Acta Metallurgica, 9(9), 795–801.

    Article  Google Scholar 

  4. Charlet, G., & Delmas, G. (1981). Thermodynamic properties of polyolefin solutions at high temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents. Polymer, 22(9), 1181–1189.

    Article  Google Scholar 

  5. Southall, N. T., Dill, K. A., & Haymet, A. D. J. (2002). A view of the hydrophobic effect. The Journal of Physical Chemistry B, 106(3), 521–533.

    Article  Google Scholar 

  6. Kwei, T. K., Pearce, E. M., & Min, B. Y. (1985). The effect of hydrogen bonding on the lower critical solution temperature of a polymer mixture. Macromolecules, 18(11), 2326–2327.

    Article  Google Scholar 

  7. Samal, S. K., Dash, M., Van Vlierberghe, S., Kaplan, D. L., Chiellini, E., van Blitterswijk, C., et al. (2012). Cationic polymers and their therapeutic potential. Chemical Society Reviews, 41(21), 7147–7194.

    Article  Google Scholar 

  8. Joanny, J. F., & Leibler, L. (1990). Weakly charged polyelectrolytes in a poor solvent. Journal de Physique, 51(6), 545–557.

    Article  Google Scholar 

  9. Andelman, D., & Joanny, J.-F. (2000). Polyelectrolyte adsorption. Comptes Rendus de l’Académie des Sciences—Series IV—Physics, 1(9), 1153–1162.

    Google Scholar 

  10. Goto, Y., Calciano, L. J., & Fink, A. L. (1990). Acid-induced folding of proteins. Proceedings of the National Academy of Sciences, 87(2), 573–577.

    Article  Google Scholar 

  11. Somasundaran, P. (Ed.). (2006). Encyclopedia of surface and colloid science (p. 6675). Taylor & Francis: New York.

    Google Scholar 

  12. Schmidt, M. (Ed.). (2004). Polyelectrolytes with defined molecular architecture II (Google eBook) (p. 231). Springer: Heidelberg.

    Google Scholar 

  13. Stuart, M. A. C., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm, M., et al. (2010). Emerging applications of stimuli-responsive polymer materials. Nature Materials, 9(2), 101–113.

    Article  Google Scholar 

  14. Bohmer, M. R., Evers, O. A., & Scheutjens, J. M. H. M. (1990). Weak polyelectrolytes between two surfaces: Adsorption and stabilization. Macromolecules, 23(8), 2288–2301. doi:10.1021/ma00210a027.

    Article  Google Scholar 

  15. Lyklema, J. (2005). Fundamentals of interface and colloid science: Particulate colloids (Google eBook) (Vol. 4, p. 692). Burlington, MA: Morgan Kaufmann.

    Google Scholar 

  16. Rojas, O. (2002). Adsorption of polyelectrolytes on mica. Encyclopedia of surface and colloid science. New York: Marcel Dekker.

    Google Scholar 

  17. Châtellier, X., & Joanny, J.-F. (1996). Adsorption of polyelectrolyte solutions on surfaces: A Debye-Huckel theory. Journal de Physique II, 6(12), 1669–1686.

    Article  Google Scholar 

  18. Dobrynin, A. V., Deshkovski, A., & Rubinstein, M. (2001). Adsorption of polyelectrolytes at oppositely charged surfaces. Macromolecules, 34(10), 3421–3436.

    Article  Google Scholar 

  19. Coolidge, A. S., & Juda, W. (1946). The Poisson–Baltzmann equation derived from the transfer of momentum. Journal of the American Chemical Society, 68(3), 608–611.

    Article  Google Scholar 

  20. Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 36(13), R167–R181.

    Article  Google Scholar 

  21. Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553–1561.

    Article  Google Scholar 

  22. Voltairas, P. A., Fotiadis, D. I., & Michalis, L. K. (2002). Hydrodynamics of magnetic drug targeting. Journal of Biomechanics, 35(6), 813–821.

    Article  Google Scholar 

  23. Shevkoplyas, S. S., Siegel, A. C., Westervelt, R. M., Prentiss, M. G., & Whitesides, G. M. (2007). The force acting on a superparamagnetic bead due to an applied magnetic field. Lab on a Chip, 7(10), 1294–1302.

    Article  Google Scholar 

  24. Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nanotoday, 2(3), 22–32.

    Article  Google Scholar 

  25. Gittleman, J., Abeles, B., & Bozowski, S. (1974). Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films. Physical Review B, 9(9), 3891–3897.

    Article  Google Scholar 

  26. Aharoni, A. (2000). Introduction to the theory of ferromagnetism (p. 319). Oxford: Oxford University Press.

    Google Scholar 

  27. (a) Okabe, F., Park, H. S., Shindo, D., Park, Y., Ohashi, K., & Tawara, Y. (2006). Microstructures and Magnetic Domain Structures Studied by Transmission Electron Microscopy. Materials Transactions, 47(1), 218–223. (b) Zhang, C., Johnson, D. T., & Brazel, C. S. (2008). Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles. IEEE Transactions on Nanobioscience, 7(4), 267–275.

    Google Scholar 

  28. Vallejo-Fernandez, G., Whear, O., Roca, A. G., Hussain, S., Timmis, J., Patel, V., et al. (2013). Mechanisms of hyperthermia in magnetic nanoparticles. Journal of Physics D: Applied Physics, 46(31), 312001.

    Article  Google Scholar 

  29. Mueller, A., Bondurant, B., & O’Brien, D. F. (2000). Visible-light-stimulated destabilization of PEG-liposomes. Macromolecules, 33(13), 4799–4804.

    Article  Google Scholar 

  30. Vasdekis, A. E., Scott, E. A., Roke, S., Hubbell, J. A., & Psaltis, D. (2013). Vesicle photonics. Annual Review of Materials Research, 43(1), 283–305.

    Article  Google Scholar 

  31. Anzai, J., Ueno, A., & Osa, T. (1987). Photo-excitable membranes. Photoinduced membrane potential changes across poly(vinyl chloride) membranes doped with azobenzene-modified crown ethers. Journal of the Chemical Society, Perkin Transactions, 2(1), 67.

    Article  Google Scholar 

  32. Dugave, C., & Demange, L. (2003). Cis-trans isomerization of organic molecules and biomolecules: Implications and applications. Chemical Reviews, 103(7), 2475–2532.

    Article  Google Scholar 

  33. Rabek, J. F. (1995). Polymer photodegradation: Mechanisms and experimental methods (Google eBook) (p. 664). Heidelberg: Springer.

    Book  Google Scholar 

  34. Muratov, A., & Baulin, V. A. (2012). Degradation versus self-assembly of block copolymer micelles. Langmuir, 28, 3071–3076.

    Article  Google Scholar 

  35. Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688–701.

    Article  Google Scholar 

  36. Deng, C. X., Sieling, F., Pan, H., & Cui, J. (2004). Ultrasound-induced cell membrane porosity. Ultrasound in Medicine & Biology, 30(4), 519–526.

    Article  Google Scholar 

  37. Kripfgans, O. D., Fowlkes, J. B., Miller, D. L., Eldevik, O. P., & Carson, P. L. (2000). Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound in Medicine & Biology, 26(7), 1177–1189.

    Article  Google Scholar 

  38. Pan, H., Zhou, Y., Sieling, F., Shi, J., Cui, J., & Deng, C. (2004). Sonoporation of cells for drug and gene delivery. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference, 5, 3531–3534.

    Google Scholar 

  39. Zhang, P., & Porter, T. (2010). An in vitro study of a phase-shift nanoemulsion: A potential nucleation agent for bubble-enhanced HIFU tumor ablation. Ultrasound in Medicine & Biology, 36(11), 1856–1866.

    Article  Google Scholar 

  40. Pitt, W. G., Husseini, G. A., & Staples, B. J. (2004). Ultrasonic drug delivery—A general review. Expert Opinion on Drug Delivery, 1(1), 37–56.

    Article  Google Scholar 

  41. Lindseth, F., Langø, T., Selbekk, T., Hansen, R., Reinertsen, I., Askeland, C., et al. (2013). Ultrasound-based guidance and therapy. INTECH.

    Google Scholar 

  42. Mano, J. F. (2008). Stimuli-responsive polymeric systems for biomedical applications. Advanced Engineering Materials, 10(6), 515–527.

    Article  Google Scholar 

  43. Ono, Y., & Shikata, T. (2006). Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution: A sharp phase transition at the lower critical solution temperature. Journal of the American Chemical Society, 128(31), 10030–10031.

    Article  Google Scholar 

  44. (a) Guillet, J. E., Dhanraj, J., Golemba, F. J., & Hartley, G. H. (1968). Stabilization of polymers and stabilizer processes. In Platzer N. A. J. (Ed.) Advances in chemistry (Vol. 85, pp. 272–286). Washington, DC: American Chemical Society. (b) Kang Derwent, J. J., & Mieler, W. F. (2008). Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Transactions of the American Ophthalmological Society, 106, 206–213; discussion 213–214.

    Google Scholar 

  45. Doorty, K. B., Golubeva, T. A., Gorelov, A. V., Rochev, Y. A., Allen, L. T., Dawson, K. A., et al (n.d.). Poly(N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells. Cardiovascular Pathology, 12(2), 105–110.

    Google Scholar 

  46. Kita-Tokarczyk, K., Grumelard, J., Haefele, T., & Meier, W. (2005). Block copolymer vesicles—Using concepts from polymer chemistry to mimic biomembranes. Polymer, 46(11), 3540–3563.

    Article  Google Scholar 

  47. Shavit, A., & Riggleman, R. A. (2013). Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers. Macromolecules, 46(12), 5044–5052.

    Article  Google Scholar 

  48. Aranda-Espinoza, H., Bermudez, H., Bates, F., & Discher, D. (2001). Electromechanical limits of polymersomes. Physical Review Letters, 87(20), 208301.

    Article  Google Scholar 

  49. Yin, X., Hoffman, A. S., & Stayton, P. S. (2006). Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules, 7(5), 1381–1385.

    Article  Google Scholar 

  50. (a) Griffin, W. C. (1954). HLB values of non-ionic surfactants. Journal of the Society of Cosmetic Chemists, Presented at the May Meeting, New York City. (b) Company, P. (1949). Classification of surface-active agents by HLB (pp. 311–326). Journal of the Society of Cosmetic Chemists, Presented at the October Meeting.

    Google Scholar 

  51. Zhu, Z., & Sukhishvili, S. A. (2009). Temperature-induced swelling and small molecule release with hydrogen-bonded multilayers of block copolymer micelles. ACS Nano, 3(11), 3595–3605.

    Article  Google Scholar 

  52. Stile, R. A., & Healy, K. E. (2001). Thermo-responsive peptide-modified hydrogels for tissue regeneration. Biomacromolecules, 2(1), 185–194.

    Article  Google Scholar 

  53. Zhang, X.-Z., Wu, D.-Q., & Chu, C.-C. (2004). Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials, 25(17), 3793–3805.

    Article  Google Scholar 

  54. Ward, M. A., & Georgiou, T. K. (2011). Thermoresponsive polymers for biomedical applications. Polymers, 3(4), 1215–1242.

    Article  Google Scholar 

  55. Cooper, G. M. (2000). The cell: A molecular approach (2nd ed.). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  56. Wileman, T., Harding, C., & Stahl, P. (1985). Receptor-mediated endocytosis. The Biochemical Journal, 232(1), 1–14.

    Google Scholar 

  57. (a) Guo, X., MacKay, J. A., & Szoka, F. C. (2003). Mechanism of pH-triggered collapse of phosphatidylethanolamine liposomes stabilized by an ortho ester polyethyleneglycol lipid. Biophysical Journal, 84(3), 1784–1795. (b) Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J., & Deming, T. J. (2004). Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Materials, 3(4), 244–248.

    Google Scholar 

  58. (a) Yao, K. D., Peng, T., Feng, H. B., & He, Y. Y. (1994). Swelling kinetics and release characteristic of crosslinked chitosan: Polyether polymer network (semi-IPN) hydrogels. Journal of Polymer Science Part A: Polymer Chemistry, 32(7), 1213–1223. (b) Pillay, V., & Fassihi, R. (1999). In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract. Journal of Controlled Release, 59(2), 229–242.

    Google Scholar 

  59. De, S. K., Aluru, N. R., Johnson, B., Crone, W. C., Beebe, D. J., & Moore, J. (2002). Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. Journal of Microelectromechanical Systems, 11(5), 544–555.

    Article  Google Scholar 

  60. Gao, X., Cao, Y., Song, X., Zhang, Z., Xiao, C., He, C., et al. (2013). pH- and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. Journal of Materials Chemistry B, 1(41), 5578.

    Article  Google Scholar 

  61. Itano, K., Choi, J., & Rubner, M. F. (2005). Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-containing polyelectrolyte multilayer films. Macromolecules, 38(8), 3450–3460.

    Article  Google Scholar 

  62. Du, J., & O’Reilly, R. K. (2009). Advances and challenges in smart and functional polymer vesicles. Soft Matter, 5(19), 3544.

    Article  Google Scholar 

  63. Keefe, A. J., & Jiang, S. (2012). Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry, 4(1), 59–63.

    Article  Google Scholar 

  64. Kataoka, K., Scholz, C., & Rapoport, N. (2007). Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science, 32(8), 962–990.

    Google Scholar 

  65. Senyei, A., Widder, K., & Czerlinski, G. (1978). Magnetic guidance of drug-carrying microspheres. Journal of Applied Physics, 49(6), 3578.

    Article  Google Scholar 

  66. Gordon, R. T., Hines, J. R., & Gordon, D. (1979). Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Medical Hypotheses, 5(1), 83–102.

    Article  Google Scholar 

  67. Hatch, G. P., & Stelter, R. E. (2001). Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. Journal of Magnetism and Magnetic Materials, 225(1), 262–276.

    Article  Google Scholar 

  68. Gómez-Lopera, S., Plaza, R., & Delgado, A. (2001). Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. Journal of Colloid and Interface Science, 240(1), 40–47.

    Article  Google Scholar 

  69. Mitsumori, M., Hiraoka, M., Shibata, T., Okuno, Y., Nagata, Y., Nishimura, Y., et al. (1996). Targeted hyperthermia using dextran magnetite complex: A new treatment modality for liver tumors. Hepato-gastroenterology, 43(12), 1431–1437.

    Google Scholar 

  70. Motoyama, J., Hakata, T., Kato, R., Yamashita, N., Morino, T., Kobayashi, T., et al. (2008). Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy. Biomagnetic Research and Technology, 6, 4.

    Article  Google Scholar 

  71. Muxworthy, A. R., & Williams, W. (2009). Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals. Journal of the Royal Society, Interface/The Royal Society, 6(41), 1207–1212.

    Article  Google Scholar 

  72. Hergt, R., Dutz, S., Müller, R., & Zeisberger, M. (2006). Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter, 18(38), S2919–S2934.

    Google Scholar 

  73. Martinez-Boubeta, C., Simeonidis, K., Makridis, A., Angelakeris, M., Iglesias, O., Guardia, P., et al. (2013). Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientific Reports, 3, 1652.

    Article  Google Scholar 

  74. Moroz, P., Jones, S. K., & Gray, B. N. (n.d.). Magnetically mediated hyperthermia: Current status and future directions. International Journal of Hyperthermia, 18(4), 267–284.

    Google Scholar 

  75. Brown, W. (1963). Thermal fluctuations of a single-domain particle. Physical Review, 130(5), 1677–1686.

    Article  Google Scholar 

  76. Shum, P., Kim, J.-M., & Thompson, D. H. (2001). Phototriggering of liposomal drug delivery systems. Advanced Drug Delivery Reviews, 53(3), 273–284.

    Article  Google Scholar 

  77. Musa, K. A. K., & Eriksson, L. A. (2009). Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct. Physical Chemistry Chemical Physics: PCCP, 11(22), 4601–4610.

    Article  Google Scholar 

  78. Kyu, T. (2012). Photoisomerization induced mesophase transitions in mixtures of crystalline liquid crystalline azobenzene with photocurable mesogenic monomers. 57th Annual report on research under sponsorship of The American Chemical Society Petroleum Research Fund, Petroleum Research Fund.

    Google Scholar 

  79. Wagner, S., Leyssner, F., Kördel, C., Zarwell, S., Schmidt, R., Weinelt, M., et al. (2009). Reversible photoisomerization of an azobenzene-functionalized self-assembled monolayer probed by sum-frequency generation vibrational spectroscopy. Physical Chemistry Chemical Physics: PCCP, 11(29), 6242–6248.

    Article  Google Scholar 

  80. Peppas, N. A., Rösler, A., Vandermeulen, G. W. M., & Klok, H.-A. (2012). Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews, 64, 270–279.

    Article  Google Scholar 

  81. Thompson, D. H., Gerasimov, O. V., Wheeler, J. J., Rui, Y., & Anderson, V. C. (1996). Triggerable plasmalogen liposomes: Improvement of system efficiency. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1279(1), 25–34.

    Article  Google Scholar 

  82. Bajic, G., Yatime, L., Sim, R. B., Vorup-Jensen, T., & Andersen, G. R. (2013). Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16426–16431.

    Article  Google Scholar 

  83. Rapoport, N. Y., Efros, A. L., Christensen, D. A., Kennedy, A. M., & Nam, K.-H. (2009). Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers. Bubble Science Engineering and Technology, 1(1–2), 31–39. doi:10.1179/175889709X446516.

    Article  Google Scholar 

  84. Song, Y., Hahn, T., Thompson, I. P., Mason, T. J., Preston, G. M., Li, G., et al. (2007). Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Research, 35(19), e129.

    Article  Google Scholar 

  85. Sirsi, S., & Borden, M. (2009). Microbubble compositions, properties and biomedical applications. Bubble Science Engineering and Technology, 1(1–2), 3–17.

    Article  Google Scholar 

  86. Lukianova-Hleb, E. Y., Ren, X., Zasadzinski, J. A., Wu, X., & Lapotko, D. O. (2012). Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells. Advanced Materials (Deerfield Beach, Fla.), 24(28), 3831–3837.

    Article  Google Scholar 

  87. Tiukinhoy-Laing, S. D., Huang, S., Klegerman, M., Holland, C. K., & McPherson, D. D. (2007). Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thrombosis Research, 119(6), 777–784.

    Article  Google Scholar 

  88. Febvay, S., Marini, D. M., Belcher, A. M., & Clapham, D. E. (2010). Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption. Nano Letters, 10(6), 2211–2219.

    Article  Google Scholar 

  89. Lübbe, A. S., Bergemann, C., Brock, J., & McClure, D. G. (1999). Physiological aspects in magnetic drug-targeting. Journal of Magnetism and Magnetic Materials, 194(1), 149–155.

    Article  Google Scholar 

  90. Cui, Z., Lee, B. H., Pauken, C., & Vernon, B. L. (2011). Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels. Journal of Biomedical Materials Research, Part A, 98(2), 159–166.

    Article  Google Scholar 

  91. Purushotham, S., Chang, P. E. J., Rumpel, H., Kee, I. H. C., Ng, R. T. H., Chow, P. K. H., et al. (2009). Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology, 20(30), 305101.

    Article  Google Scholar 

  92. Potineni, A., Lynn, D. M., Langer, R., et al. (2003). Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. Journal of Controlled Release, 86, 223.

    Article  Google Scholar 

  93. Shenoy, D., Little, S., Langer, R., et al. (2005). Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharmaceutical Research, 22, 2107.

    Article  Google Scholar 

  94. van der Zee, J. (2002). Heating the patient: A promising approach? Annals of Oncology, 13, 1173.

    Article  Google Scholar 

  95. Chung, J. E., Yokoyama, M., Yamato, M., et al. (1999). Thermo-responsive drug delivery from poly-meric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). Journal of Controlled Release, 62, 115.

    Article  Google Scholar 

  96. Liu, S. Q., Tong, Y. W., & Yang, Y. Y. (2005). Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly(D, L-lactide-co-glycolide) for controlled delivery of paclitaxel. Molecular BioSystems, 1, 158.

    Article  Google Scholar 

  97. Mitragotri, S. (2005). Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nature Reviews Drug Discovery, 4, 255.

    Article  Google Scholar 

  98. Kabanov, A. V., Batrakova, E. V., & Alakhov, V. Y. (2002). Pluronic block copolymers for overcoming drug resistance in cancer. Advanced Drug Delivery Reviews, 54, 759.

    Article  Google Scholar 

  99. Gao, Z. G., Fain, H. D., & Rapoport, N. (2005). Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. Journal of Controlled Release, 102, 203.

    Article  Google Scholar 

  100. Nguyen, A. T., & Wrenn, S. P. (2014). Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery. Wiley Interdisciplinary Reviews in Nanomedicine and Nanobiotechnology, 6(3), 316–325.

    Article  Google Scholar 

  101. Martin, K. H., & Dayton, P. A. (2013). Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdisciplinary Reviews in Nanomedicine and Nanobiotechnology., 5, 329–343.

    Article  Google Scholar 

  102. Leong-Poi, H., Kuliszewski, M. A., Lekas, M., et al. (2007). Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circulation Research, 101, 295–303.

    Article  Google Scholar 

  103. Christiansen, J. P., French, B. A., Klibanov, A. L., et al. (2003). Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound in Medicine and Biology, 29, 1759–1767.

    Article  Google Scholar 

  104. Rapoport, N., Gao, Z., & Kennedy, A. (2007). Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. Journal of the National Cancer Institute, 99, 1095–1106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holowka, E.P., Bhatia, S.K. (2014). Smart Drug Delivery Systems. In: Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1998-7_7

Download citation

Publish with us

Policies and ethics