Skip to main content

Thin-Film Materials

  • Chapter
  • First Online:
  • 1779 Accesses

Abstract

Our initial discussions surrounding controlled-release systems focused on the fundamentals of composition, release, and diffusion [1]. Alterations to these three basic parameters led to distinct profiles that identified their potential areas of application, such as embolics [2] or gel caps [3]. We can recall from Chap. 1 that there are various routes we can either actively or passively enter the body. The general applications were restricted in our discussion in Chap. 2 to oral drug delivery, traditionally entering the bloodstream through hydrolysis in the stomach, or implantation, done at the site of treatment. Since drug delivery encompasses a broad spectrum of treatment methodologies, we can ask two basic questions:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. (a) Wesselingh, J. A. (1993). Controlling diffusion. Journal of Controlled Release, 24(1), 47–60. (b) Lee, P. I. (1986). Initial concentration distribution as a mechanism for regulating drug release from diffusion controlled and surface erosion controlled matrix systems. Journal of Controlled Release, 4(1), 1–7.

    Google Scholar 

  2. Kerr, D. J. (1987). Microparticulate drug delivery systems as an adjunct to cancer treatment. Cancer Drug Delivery, 4(1), 55–61.

    Article  Google Scholar 

  3. Stegemann, S., & Bornem, C. (2002). Hard gelatin capsules today—And tomorrow (pp. 2–24). Capsugel Library.

    Google Scholar 

  4. (a) Abrams, J. (1983). New nitrate delivery systems: Buccal nitroglycerin. American Heart Journal, 105(5), 848–854. (b) Sudhakar, Y., Kuotsu, K., & Bandyopadhyay, A. K. (2006). Buccal bioadhesive drug delivery—A promising option for orally less efficient drugs. Journal of Controlled Release, 114(1), 15–40.

    Google Scholar 

  5. Blumenthal, H. P., Fung, H. L., McNiff, E. F., & Yap, S. K. (1977). Plasma nitroglycerin levels after sublingual, oral and topical administration. British Journal of Clinical Pharmacology, 4(2), 241–242.

    Article  Google Scholar 

  6. (a) Down, G. R. B. (1991). The etiology of pinhole and bubble defects in enteric and controlled-release film coatings. Drug Development and Industrial Pharmacy, 17(2), 309–315. (b) Wilding, I. R., Davis, S. S., Pozzi, F., Furlani, P., & Gazzaniga, A. (1994). Enteric coated timed release systems for colonic targeting. International Journal of Pharmaceutics, 111(1), 99–102.

    Google Scholar 

  7. Cohen, G. M., Bakke, O. M., & Davies, D. S. (1974). “First-pass” metabolism of paracetamol in rat liver. The Journal of Pharmacy and Pharmacology, 26(5), 348–351.

    Article  Google Scholar 

  8. Seager, H. (1998). Drug-delivery products and the Zydis fast-dissolving dosage form. The Journal of Pharmacy and Pharmacology, 50(4), 375–382.

    Article  Google Scholar 

  9. Gorsline, J., Okerholm, R. A., Rolf, C. N., Moos, C. D., & Hwang, S. S. (1992). Comparison of plasma nicotine concentrations after application of nicoderm (nicotine transdermal system) to different skin sites. Journal of Clinical Pharmacology, 32(6), 576–581.

    Article  Google Scholar 

  10. Pham, C. L., Wood, A. J., Lambert, M. B., & Carpenter, W. (2005). Palatal erythema in patients using Listerine Cool Mint PocketPaks Oral Care Strips: Case reports. Journal of Dentistry for Children (Chicago, Ill.), 72(2), 52–55.

    Google Scholar 

  11. Oral Drug Delivery Market Report. Retrieved from http://www.contractpharma.com/issues/2012-06/view_features/oral-drug-delivery-market-report/

  12. Evans, P. M., Lynch, G. L., & Labelle, P. (2012). Effects of oral administration of diphenhydramine on pupil diameter, intraocular pressure, tear production, tear film quality, conjunctival goblet cell density, and corneal sensitivity of clinically normal adult dogs. American Journal of Veterinary Research, 73(12), 1983–1986.

    Article  Google Scholar 

  13. Sica, D. A., & Grubbs, R. (2005). Transdermal clonidine: Therapeutic considerations. Journal of Clinical Hypertension (Greenwich, Conn.), 7(9), 558–562.

    Article  Google Scholar 

  14. (a) Kumar, S., Gupta, S. K., & Sharma, P. K. (2012). A review on recent trends in oral drug delivery-fast dissolving formulation technology. Advances in Biological Research, 6(1), 6–13. (b) Hanumanaik, M., Patil, U., Kumar, G., Patel, S. K., Singh, I., & Jadatkar, K. (2012). Design, evaluation, and recent trends in transdermal drug system: A review. International Journal of Pharmaceutical Sciences and Research, 3(8), 2393–2406. (c) Mohan Gandhi, B., & Shankar, P. D. S. (2012). Current trends and challenges faced in ocular drug delivery systems. International Journal of Research Pharmacy and Chemistry, 2(3), 801–808.

    Google Scholar 

  15. Sankar, V., Hearnden, V., Hull, K., Juras, D. V., Greenberg, M. S., Kerr, A. R., et al. (2011). Local drug delivery for oral mucosal diseases: Challenges and opportunities. Oral Diseases, 17(Suppl 1), 73–84.

    Article  Google Scholar 

  16. Jyoti, A., Gurpreet, S., Seema, S., & Rana, A. C. (2011). Fast dissolving films: A novel approach to oral drug delivery. International Research Journal of Pharmacy, 2(12), 69–74.

    Google Scholar 

  17. (a) Chen, L. L., Chetty, D. J., & Chien, Y. W. (1999). A mechanistic analysis to characterize oramucosal permeation properties. International Journal of Pharmaceutics, 184(1), 63–72. (b) Sohi, H., Ahuja, A., Ahmad, F. J., & Khar, R. K. (2010). Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Development and Industrial Pharmacy, 36(3), 254–282.

    Google Scholar 

  18. Philibert, J. (2006). One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundamentals, 4, 1–19.

    Google Scholar 

  19. Schultz, S. G. (2001). Epithelial water absorption: Osmosis or cotransport? Proceedings of the National Academy of Sciences of the United States of America, 98(7), 3628–3630.

    Article  Google Scholar 

  20. Zimmermann, U., Haase, A., Langbein, D., & Meinzer, F. (1993). Mechanisms of long-distance water transport in plants: A re-examination of some paradigms in the light of new evidence. Philosophical Transactions of the Royal Society, B: Biological Sciences, 341(1295), 19–31.

    Article  Google Scholar 

  21. Wilding, I. (2000). Site-specific drug delivery in the gastrointestinal tract. Critical Reviews in Therapeutic Drug Carrier Systems, 17(6), 557–620.

    Article  Google Scholar 

  22. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988–994.

    Article  Google Scholar 

  23. Marmur, A. (2003). Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir, 19(20), 8343–8348.

    Article  Google Scholar 

  24. Whyman, G., Bormashenko, E., & Stein, T. (2008). The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Physics Letters, 450(4), 355–359.

    Article  Google Scholar 

  25. Yohe, S. T., Colson, Y. L., & Grinstaff, M. W. (2012). Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates. Journal of the American Chemical Society, 134(4), 2016–2019.

    Article  Google Scholar 

  26. Senel, S., & Hincal, A. A. (2001). Drug permeation enhancement via buccal route: Possibilities and limitations. Journal of Controlled Release: Official Journal of the Controlled Release Society, 72(1–3), 133–144.

    Article  Google Scholar 

  27. Kokate, A., Li, X., & Jasti, B. (2008). Effect of drug lipophilicity and ionization on permeability across the buccal mucosa: A technical note. AAPS PharmSciTech, 9(2), 501–504.

    Article  Google Scholar 

  28. (a) Rathbone, M. J., & Tucker, I. G. (1993). Mechanisms, barriers and pathways of oral mucosal drug permeation. Advanced Drug Delivery Reviews, 12(1), 41–60. (b) Damgé, C., Reis, C. P., & Maincent, P. (2008). Nanoparticle strategies for the oral delivery of insulin. Expert Opinion on Drug Delivery, 5(1), 45–68.

    Google Scholar 

  29. (a) Proksch, E., Brandner, J. M., & Jensen, J.-M. (2008). The skin: An indispensable barrier. Experimental Dermatology, 17(12), 1063–1072. (b) Krawczyk, W. S. (1971). A pattern of epidermal cell migration during wound healing. The Journal of Cell Biology, 49(2), 247–263.

    Google Scholar 

  30. (a) Sharma, N., Agarwal, G., Rana, A. C., & Bhat, Z. A. L. I. (2011). A review: Transdermal drug delivery system: A tool for novel drug delivery system. International Journal of Drug Development & Research, 3(3), 70–84. Retrieved from http://www.ijddr.in. Covered in Official Product of Elsevier, The Netherlands © 2010. (b) Keleb, E., Sharma, R. K., Mosa, E. B., & Aljahwi, A. Z. (2010). Transdermal drug delivery system—Design and evaluation. International Journal of Advances in Pharmaceutical Sciences, 1(3), 201–211. doi:10.5138/171.

  31. Goldstein, J. L., Anderson, R. G. W., & Brown, M. S. (1979). Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature, 279(5715), 679–685.

    Article  Google Scholar 

  32. Epstein, N. (1989). On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chemical Engineering Science, 44(3), 777–779.

    Article  Google Scholar 

  33. Gaudana, R., Ananthula, H. K., Parenky, A., & Mitra, A. K. (2010). Ocular drug delivery. The AAPS Journal, 12(3), 348–360.

    Article  Google Scholar 

  34. (a) Lu, L., Reinach, P. S., & Kao, W. (2001). Corneal epithelial wound healing. Experimental Biology and Medicine, 226(7), 653–664. (b) Dohlman, C. H. (1971). The function of the corneal epithelium in health and disease. The Jonas S. Friedenwald Memorial Lecture. Investigative Ophthalmology, 10(6), 383–407.

    Google Scholar 

  35. Ferain, E., & Legras, R. (1997). Characterisation of nanoporous particle track etched membrane. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 131(1), 97–102.

    Article  Google Scholar 

  36. Atkins, P. W. (1997). Physical chemistry. New York: Macmillan Higher Education.

    Google Scholar 

  37. Flory, P. J. (1953). Principles of polymer chemistry (p. 672). Ithaca, NY: Cornell University.

    Google Scholar 

  38. Miller, C. C. (1924). The Stokes–Einstein law for diffusion in solution. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 106(740), 724–749.

    Article  Google Scholar 

  39. Qiu, H., Lv, L., Pan, B., Zhang, Q., Zhang, W., & Zhang, Q. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University SCIENCE A, 10(5), 716–724.

    Article  Google Scholar 

  40. Chifflet, S., & Hernández, J. A. (2012). The plasma membrane potential and the organization of the actin cytoskeleton of epithelial cells. International Journal of Cell Biology, 2012, 121424.

    Article  Google Scholar 

  41. Yamamoto, K., Ladage, P. M., Ren, D. H., Li, L., Petroll, W. M., Jester, J. V., et al. (2002). Effect of eyelid closure and overnight contact lens wear on viability of surface epithelial cells in rabbit cornea. Cornea, 21(1), 85–90.

    Article  Google Scholar 

  42. (a) Brøndsted, H., & Kopec̆ek, J. (1991). Hydrogels for site-specific oral drug delivery: Synthesis and characterization. Biomaterials, 12(6), 584–592. (b) Koppel, D. E., Sheetz, M. P., & Schindler, M. (1981). Matrix control of protein diffusion in biological membranes. Proceedings of the National Academy of Sciences of the United States of America, 78(6), 3576–3580.

    Google Scholar 

  43. (a) Dillman, W. J., & Miller, I. F. (1973). On the adsorption of serum proteins on polymer membrane surfaces. Journal of Colloid and Interface Science, 44(2), 221–241. (b) Peck, K. D., Hsu, J., Li, S. K., Ghanem, A. H., & Higuchi, W. I. (1998). Flux enhancement effects of ionic surfactants upon passive and electroosmotic transdermal transport. Journal of Pharmaceutical Sciences, 87(9), 1161–1169. (c) Barar, J., Javadzadeh, A. R., & Omidi, Y. (2008). Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opinion on Drug Delivery, 5(5), 567–581.

    Google Scholar 

  44. Peck, K. D., Ghanem, A. H., & Higuchi, W. I. (1994). Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharmaceutical Research, 11(9), 1306–1314.

    Article  Google Scholar 

  45. Barry, B. (2001). Novel mechanisms and devices to enable successful transdermal drug delivery. European Journal of Pharmaceutical Sciences, 14(2), 101–114.

    Article  Google Scholar 

  46. Naik, A., Kalia, Y., & Guy, R. (2000). Transdermal drug delivery: Overcoming the skin’s barrier function. Pharmaceutical Science & Technology Today, 3(9), 318–326.

    Article  Google Scholar 

  47. Hu, G., Huang, J., Orkoulas, G., & Christofides, P. D. (2009). Investigation of film surface roughness and porosity dependence on lattice size in a porous thin film deposition process. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 80(4 Pt 1), 041122.

    Article  Google Scholar 

  48. Vanstreels, K., Wu, C., Verdonck, P., & Baklanov, M. R. (2012). Intrinsic effect of porosity on mechanical and fracture properties of nanoporous ultralow-k dielectrics. Applied Physics Letters, 101(12), 123109.

    Article  Google Scholar 

  49. Steward, P. A., Hearn, J., & Wilkinson, M. C. (2000). An overview of polymer latex film formation and properties. Advances in Colloid and Interface Science, 86(3), 195–267.

    Article  Google Scholar 

  50. Miyazaki, T., Nishida, K., & Kanaya, T. (2004). Thermal expansion behavior of ultrathin polymer films supported on silicon substrate. Physical Review E, 69(6), 061803.

    Article  Google Scholar 

  51. Asbeck, W. K., & Van Loo, M. (1949). Critical pigment volume relationships. Industrial & Engineering Chemistry, 41(7), 1470–1475.

    Article  Google Scholar 

  52. Girifalco, L. A., & Good, R. J. (1957). A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. The Journal of Physical Chemistry, 61(7), 904–909.

    Article  Google Scholar 

  53. Venables, J. (2000). Introduction to surface and thin film processes (p. 372). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  54. Young, T. (2007). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87.

    Article  Google Scholar 

  55. Ostwald, W. (1897). Studies on the formation and transformation of solid bodies. Chemie, 22, 289–330.

    Google Scholar 

  56. Davis, F., & Higson, S. P. J. (2005). Structured thin films as functional components within biosensors. Biosensors and Bioelectronics, 21(1), 1–20.

    Article  Google Scholar 

  57. Ash, M., & Ash, I. (2007). Handbook of fillers, extenders, and diluents (p. 503). Endicott, NY: Synapse Info Resources.

    Google Scholar 

  58. Mahato, R. I., & Narang, A. S. (2011). Pharmaceutical dosage forms and drug delivery (2nd ed., p. 512). Boca Raton, FL: CRC Press.

    Google Scholar 

  59. Qiu, L. Y., & Bae, Y. H. (2006). Polymer architecture and drug delivery. Pharmaceutical Research, 23(1), 1–30.

    Article  Google Scholar 

  60. Pouton, C. W. (1997). Formulation of self-emulsifying drug delivery systems. Advanced Drug Delivery Reviews, 25(1), 47–58.

    Article  Google Scholar 

  61. Shimoda, H., Taniguchi, K., Nishimura, M., Matsuura, K., Tsukioka, T., Yamashita, H., et al. (2009). Preparation of a fast dissolving oral thin film containing dexamethasone: A possible application to antiemesis during cancer chemotherapy. European Journal of Pharmaceutics and Biopharmaceutics, 73(3), 361–365.

    Article  Google Scholar 

  62. Abbasi, A., Eslamian, M., Heyd, D., & Rousseau, D. (2008). Controlled release of DSBP from genipin-crosslinked gelatin thin films. Pharmaceutical Development and Technology, 13(6), 549–557.

    Article  Google Scholar 

  63. Verma, D. D., Verma, S., Blume, G., & Fahr, A. (2003). Particle size of liposomes influences dermal delivery of substances into skin. International Journal of Pharmaceutics, 258(1–2), 141–151.

    Article  Google Scholar 

  64. Roxhed, N., Griss, P., & Stemme, G. (2008). Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomedical Microdevices, 10(2), 271–279.

    Article  Google Scholar 

  65. Ciolino, J. B., Hoare, T. R., Iwata, N. G., Behlau, I., Dohlman, C. H., Langer, R., et al. (2009). A drug-eluting contact lens. Investigative Ophthalmology & Visual Science, 50(7), 3346–3352.

    Article  Google Scholar 

  66. Zimmer, S., Jacobs, B., Levy, T., et al. (2002). Med Tech 101: The medical device handbook. New York: Deutsche Bank Securities.

    Google Scholar 

  67. Mercado, N., Boersma, E., Wijns, W., Gersh, B. J., Morillo, C. A., de Valk, V., et al. (2002). Clinical and quantitative coronary angiographic predictors of coronary restenosis: A comparative analysis from the balloon-to-stent era. Journal of the American College of Cardiology, 38, 645.

    Article  Google Scholar 

  68. Fattori, R., & Piva, T. (2003). Drug eluting stents in vascular interventions. Lancet, 361, 247.

    Article  Google Scholar 

  69. Sharkawi, T., Cornhill, F., Lafont, A., Sabaria, P., & Vert, M. (2007). Intravascular bioresorbable polymer stents: A potential alternative to current drug eluting metal stents. Journal of Pharmaceutical Sciences, 96, 2829.

    Article  Google Scholar 

  70. Maluenda, G., Lemesle, G., & Waksman, R. (2009). A critical appraisal of the safety and efficacy of drug-eluting stents. Clinical Pharmacology and Therapeutics, 85, 474.

    Article  Google Scholar 

  71. Acharya, G., & Park, K. (2006). Mechanisms of controlled drug release from drug-eluting stents. Advanced Drug Delivery Reviews, 58, 387.

    Article  Google Scholar 

  72. Weisz, G., Leon, M. B., & Holmes, D. R., Jr. (2006). Two-year outcomes after sirolimus-eluting stent im-plantation: Results from the Sirolimus-Eluting Stent in de Novo Native Coronary Lesions (SIRIUS) trial. Journal of the American College of Cardiology, 47, 1350.

    Article  Google Scholar 

  73. Groeneveld, P. W., Matta, M. A., Greenhut, A. P., & Yang, F. (2008). Drug-eluting compared with bare-metal coronary stents among elderly patients. Journal of the American College of Cardiology, 51, 2017.

    Article  Google Scholar 

  74. Axel, D. I., Kunert, W., & Göggelmann, C. (1997). Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation, 96, 636.

    Article  Google Scholar 

  75. Lemos, P. A. (2007). Polymeric stents: Degradable but strong. Catheterization and Cardiovascular Interventions, 70, 524.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holowka, E.P., Bhatia, S.K. (2014). Thin-Film Materials. In: Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1998-7_3

Download citation

Publish with us

Policies and ethics