Skip to main content

Etiology and Mechanisms of Chronic Abdominal Pain

  • Chapter
  • First Online:
Book cover Chronic Abdominal Pain

Abstract

Pain is a complex and multidimensional process which involves physical, emotional, and perceptual integration. It has the fundamental objective of survival and protecting against tissue damage. In normal conditions, this process is adaptive and has a protective role, which is usually self-limited. However, in pathological conditions neuroplastic changes lead to persistent increased perception and responsiveness to noxious stimuli, or response to normally non-noxious stimuli. Such changes can occur in primary afferent terminals (peripheral sensitization) but also in the spinal cord and in the brain (central sensitization) in both neurons and glia, thereby altering the processing of sensory information. Recent information suggests that intestinal microorganisms have the ability to alter intestinal sensation and perhaps may alter mood as well, as there is a bilateral communication between luminal gut inhabitants and the peripheral and central nervous systems. These processes are very important in the development and persistence of visceral pain in several locations, predominantly gastrointestinal chronic pain syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.

    PubMed Central  PubMed  Google Scholar 

  2. Woolf CJ, Ma Q. Nociceptors–noxious stimulus detectors. Neuron. 2007;55(3):353–64.

    CAS  PubMed  Google Scholar 

  3. Rome Foundation. Guidelines–Rome III diagnostic criteria for functional gastrointestinal disorders. J Gastrointestin Liver Dis. 2006;15(3):307–12.

    Google Scholar 

  4. Okumura T, Tanno S, Ohhira M. Prevalence of functional dyspepsia in an outpatient clinic with primary care physicians in Japan. J Gastroenterol. 2010;45(2):187–94.

    PubMed  Google Scholar 

  5. Miwa H, Watari J, Fukui H, et al. Current understanding of pathogenesis of functional dyspepsia. J Gastroenterol Hepatol. 2011;26 Suppl 3:53–60.

    PubMed  Google Scholar 

  6. Camilleri M, Northcutt AR, Kong S, et al. Efficacy and safety of alosetron in women with irritable bowel syndrome: a randomised, placebo-controlled trial. Lancet. 2000;355(9209):1035–40.

    CAS  PubMed  Google Scholar 

  7. Sperber AD, Shvartzman P, Friger M, et al. A comparative reappraisal of the Rome II and Rome III diagnostic criteria: are we getting closer to the 'true' prevalence of irritable bowel syndrome? Eur J Gastroenterol Hepatol. 2007;19(6):441–7.

    PubMed  Google Scholar 

  8. van Kerkhoven LA, Laheij RJ, Meineche-Schmidt V, et al. Functional dyspepsia: not all roads seem to lead to Rome. J Clin Gastroenterol. 2009;43(2):118–22.

    PubMed  Google Scholar 

  9. Barbara G, Cremon C, De Giorgio R, et al. Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome. Curr Gastroenterol Rep. 2011;13(4):308–15.

    PubMed  Google Scholar 

  10. Waseem S, Moshiree B, Draganov PV. Gastroparesis: current diagnostic challenges and management considerations. World J Gastroenterol. 2009;15(1):25–37.

    PubMed Central  PubMed  Google Scholar 

  11. Tack J. Functional dyspepsia: impaired Fundic accommodation. Curr Treat Options Gastroenterol. 2000;3(4):287–94.

    PubMed  Google Scholar 

  12. Quartero AO, de Wit NJ, Lodder AC, et al. Disturbed solid-phase gastric emptying in functional dyspepsia: a meta-analysis. Dig Dis Sci. 1998;43(9):2028–33.

    CAS  PubMed  Google Scholar 

  13. Tack J, Bisschops R, Sarnelli G. Pathophysiology and treatment of functional dyspepsia. Gastroenterology. 2004;127(4):1239–55.

    PubMed  Google Scholar 

  14. Ji RR, Kohno T, Moore KA, et al. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26(12):696–705.

    CAS  PubMed  Google Scholar 

  15. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288(5472):1765–9.

    CAS  PubMed  Google Scholar 

  16. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Neugebauer V, Schaible HG. Evidence for a central component in the sensitization of spinal neurons with joint input during development of acute arthritis in cat's knee. J Neurophysiol. 1990;64(1):299–311.

    CAS  PubMed  Google Scholar 

  18. Yunus MB. Role of central sensitization in symptoms beyond muscle pain, and the evaluation of a patient with widespread pain. Best Pract Res Clin Rheumatol. 2007;21(3):481–97.

    PubMed  Google Scholar 

  19. Yarnitsky D, Goor-Aryeh I, Bajwa ZH, et al. 2003 Wolff Award: possible parasympathetic contributions to peripheral and central sensitization during migraine. Headache. 2003;43(7):704–14.

    PubMed  Google Scholar 

  20. Malick A, Burstein R. Peripheral and central sensitization during migraine. Funct Neurol. 2000;15 Suppl 3:28–35.

    PubMed  Google Scholar 

  21. Ghelardini C, Galeotti N, Grazioli I, et al. Indomethacin, alone and combined with prochlorperazine and caffeine, but not sumatriptan, abolishes peripheral and central sensitization in in vivo models of migraine. J Pain. 2004;5(8):413–9.

    CAS  PubMed  Google Scholar 

  22. Fernandez-de-Las-Penas C, Ortega-Santiago R, Cuadrado ML, et al. Bilateral widespread mechanical pain hypersensitivity as sign of central sensitization in patients with cluster headache. Headache. 2011;51(3):384–91.

    PubMed  Google Scholar 

  23. Verne GN, Price DD. Irritable bowel syndrome as a common precipitant of central sensitization. Curr Rheumatol Rep. 2002;4(4):322–8.

    PubMed  Google Scholar 

  24. Price DD, Craggs JG, Zhou Q, et al. Widespread hyperalgesia in irritable bowel syndrome is dynamically maintained by tonic visceral impulse input and placebo/nocebo factors: evidence from human psychophysics, animal models, and neuroimaging. Neuroimage. 2009;47(3):995–1001.

    PubMed Central  PubMed  Google Scholar 

  25. Staud R, Robinson ME, Price DD. Temporal summation of second pain and its maintenance are useful for characterizing widespread central sensitization of fibromyalgia patients. J Pain. 2007;8(11):893–901.

    PubMed Central  PubMed  Google Scholar 

  26. Meeus M, Nijs J. Central sensitization: a biopsychosocial explanation for chronic widespread pain in patients with fibromyalgia and chronic fatigue syndrome. Clin Rheumatol. 2007;26(4):465–73.

    PubMed Central  PubMed  Google Scholar 

  27. Gwilym SE, Keltner JR, Warnaby CE, et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 2009;61(9):1226–34.

    PubMed  Google Scholar 

  28. Winkelstein BA. Mechanisms of central sensitization, neuroimmunology & injury biomechanics in persistent pain: implications for musculoskeletal disorders. J Electromyogr Kinesiol. 2004;14(1):87–93.

    PubMed  Google Scholar 

  29. Fernandez-Lao C, Cantarero-Villanueva I, Fernandez-de-las-Penas C, et al. Widespread mechanical pain hypersensitivity as a sign of central sensitization after breast cancer surgery: comparison between mastectomy and lumpectomy. Pain Med. 2011;12(1):72–8.

    PubMed  Google Scholar 

  30. Fernandez-de-las-Penas C, Galan-del-Rio F, Fernandez-Carnero J, et al. Bilateral widespread mechanical pain sensitivity in women with myofascial temporomandibular disorder: evidence of impairment in central nociceptive processing. J Pain. 2009;10(11):1170–8.

    PubMed  Google Scholar 

  31. Bonjardim LR, da Silva AP, Gameiro GH, et al. Nociceptive behavior induced by mustard oil injection into the temporomandibular joint is blocked by a peripheral non-opioid analgesic and a central opioid analgesic. Pharmacol Biochem Behav. 2009;91(3):321–6.

    CAS  PubMed  Google Scholar 

  32. Zhang S, Chiang CY, Xie YF, et al. Central sensitization in thalamic nociceptive neurons induced by mustard oil application to rat molar tooth pulp. Neuroscience. 2006;142(3):833–42.

    CAS  PubMed  Google Scholar 

  33. Park SJ, Zhang S, Chiang CY, et al. Central sensitization induced in thalamic nociceptive neurons by tooth pulp stimulation is dependent on the functional integrity of trigeminal brainstem subnucleus caudalis but not subnucleus oralis. Brain Res. 2006;1112(1):134–45.

    CAS  PubMed  Google Scholar 

  34. Brumovsky PR, Gebhart GF. Visceral organ cross-sensitization—an integrated perspective. Auton Neurosci. 2010;153(1–2):106–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Sipe WE, Brierley SM, Martin CM, et al. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1288–98.

    CAS  PubMed  Google Scholar 

  36. Anand P, Aziz Q, Willert R, et al. Peripheral and central mechanisms of visceral sensitization in man. Neurogastroenterol Motil. 2007;19(1 Suppl):29–46.

    CAS  PubMed  Google Scholar 

  37. Juhl GI, Jensen TS, Norholt SE, et al. Central sensitization phenomena after third molar surgery: a quantitative sensory testing study. Eur J Pain. 2008;12(1):116–27.

    PubMed  Google Scholar 

  38. Stubhaug A, Breivik H, Eide PK, et al. Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol Scand. 1997;41(9):1124–32.

    CAS  PubMed  Google Scholar 

  39. Stubhaug A. A new method to evaluate central sensitization to pain following surgery. Effect of ketamine. Acta Anaesthesiol Scand Suppl. 1997;110:154–5.

    CAS  PubMed  Google Scholar 

  40. Azpiroz F, Bouin M, Camilleri M, et al. Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol Motil. 2007;19(1 Suppl):62–88.

    CAS  PubMed  Google Scholar 

  41. Seminowicz DA, Labus JS, Bueller JA, et al. Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology. 2010;139(1):48–57.e2.

    PubMed Central  PubMed  Google Scholar 

  42. Guenther S, Reeh PW, Kress M. Rises in [Ca2+]i mediate capsaicin- and proton-induced heat sensitization of rat primary nociceptive neurons. Eur J Neurosci. 1999;11(9):3143–50.

    CAS  PubMed  Google Scholar 

  43. Hucho T, Levine JD. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron. 2007;55(3):365–76.

    CAS  PubMed  Google Scholar 

  44. Barbara G, Stanghellini V, Cremon C, et al. What is the effect of inflammation on intestinal function? Inflamm Bowel Dis. 2008;14 Suppl 2:S140–4.

    PubMed  Google Scholar 

  45. Barbara G, Vallance BA, Collins SM. Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice. Gastroenterology. 1997;113(4):1224–32.

    CAS  PubMed  Google Scholar 

  46. Barbara G, De Giorgio R, Deng Y, et al. Role of immunologic factors and cyclooxygenase 2 in persistent postinfective enteric muscle dysfunction in mice. Gastroenterology. 2001;120(7):1729–36.

    CAS  PubMed  Google Scholar 

  47. Grundy D. 5-HT system in the gut: roles in the regulation of visceral sensitivity and motor functions. Eur Rev Med Pharmacol Sci. 2008;12 Suppl 1:63–7.

    PubMed  Google Scholar 

  48. Jones 3rd RC, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci. 2005;25(47):10981–9.

    CAS  PubMed  Google Scholar 

  49. Geppetti P, Trevisani M. Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol. 2004;141(8):1313–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Chan CL, Facer P, Davis JB, et al. Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet. 2003;361(9355):385–91.

    CAS  PubMed  Google Scholar 

  51. Bewick GA. Bowels control brain: gut hormones and obesity. Biochem Med (Zagreb). 2012;22(3):283–97.

    CAS  Google Scholar 

  52. Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013;144(1):36–49.

    PubMed  Google Scholar 

  53. Tillisch K, Labus JS. Advances in imaging the brain-gut axis: functional gastrointestinal disorders. Gastroenterology. 2011;140(2):407–411.e1.

    PubMed Central  PubMed  Google Scholar 

  54. Keita AV, Soderholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil. 2010;22(7):718–33.

    CAS  PubMed  Google Scholar 

  55. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14.

    CAS  PubMed  Google Scholar 

  56. Koloski NA, Jones M, Kalantar J, et al. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut. 2012;61(9):1284–90.

    CAS  PubMed  Google Scholar 

  57. Bradesi S. Role of spinal cord glia in the central processing of peripheral pain perception. Neurogastroenterol Motil. 2010;22(5):499–511.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Staud R. Is it all central sensitization? Role of peripheral tissue nociception in chronic musculoskeletal pain. Curr Rheumatol Rep. 2010;12(6):448–54.

    PubMed  Google Scholar 

  59. Khodorova A, Strichartz GR. Contralateral paw sensitization following injection of endothelin-1: effects of local anesthetics differentiate peripheral and central processes. Neuroscience. 2010;165(2):553–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Wall PD, Woolf CJ. Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. J Physiol. 1984;356:443–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Cervero F. Visceral pain: mechanisms of peripheral and central sensitization. Ann Med. 1995;27(2):235–9.

    CAS  PubMed  Google Scholar 

  62. Holst H, Arendt-Nielsen L, Mosbech H, et al. Increased capsaicin-induced secondary hyperalgesia in patients with multiple chemical sensitivity. Clin J Pain. 2011;27(2):156–62.

    PubMed  Google Scholar 

  63. Modir JG, Wallace MS. Human experimental pain models 3: heat/capsaicin sensitization and intradermal capsaicin models. Methods Mol Biol. 2010;617:169–74.

    PubMed  Google Scholar 

  64. Srbely JZ, Dickey JP, Bent LR, et al. Capsaicin-induced central sensitization evokes segmental increases in trigger point sensitivity in humans. J Pain. 2010;11(7):636–43.

    CAS  PubMed  Google Scholar 

  65. van den Elzen BD, Tytgat GN, Boeckxstaens GE. Gastric hypersensitivity induced by oesophageal acid infusion in healthy volunteers. Neurogastroenterol Motil. 2009;21(2):160–9.

    PubMed  Google Scholar 

  66. Graversen C, Brock C, Drewes AM, et al. Biomarkers for visceral hypersensitivity identified by classification of electroencephalographic frequency alterations. J Neural Eng. 2011;8(5):056014.

    PubMed  Google Scholar 

  67. Peng HY, Chen GD, Tung KC, et al. Colon mustard oil instillation induced cross-organ reflex sensitization on the pelvic-urethra reflex activity in rats. Pain. 2009;142(1–2):75–88.

    CAS  PubMed  Google Scholar 

  68. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    PubMed Central  PubMed  Google Scholar 

  69. Tack J, Caenepeel P, Fischler B, et al. Symptoms associated with hypersensitivity to gastric distention in functional dyspepsia. Gastroenterology. 2001;121(3):526–35.

    CAS  PubMed  Google Scholar 

  70. Whitehead WE, Holtkotter B, Enck P, et al. Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology. 1990;98(5 Pt 1):1187–92.

    CAS  PubMed  Google Scholar 

  71. Mertz H, Naliboff B, Munakata J, et al. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology. 1995;109(1):40–52.

    CAS  PubMed  Google Scholar 

  72. Garry EM, Moss A, Delaney A, et al. Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr Biol. 2003;13(4):321–8.

    CAS  PubMed  Google Scholar 

  73. You HJ, Chen J, Morch CD, et al. Differential effect of peripheral glutamate (NMDA, non-NMDA) receptor antagonists on bee venom-induced spontaneous nociception and sensitization. Brain Res Bull. 2002;58(6):561–7.

    CAS  PubMed  Google Scholar 

  74. Hudspith M, Munglani R. A role for presynaptic NMDA receptors in central sensitization in the spinal cord dorsal horn? Br J Anaesth. 1998;81(2):294–5.

    CAS  PubMed  Google Scholar 

  75. Ma QP, Woolf CJ. Noxious stimuli induce an N-methyl-d-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: implications for the treatment of mechanical allodynia. Pain. 1995;61(3):383–90.

    Google Scholar 

  76. South SM, Kohno T, Kaspar BK, et al. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J Neurosci. 2003;23(12):5031–40.

    CAS  PubMed  Google Scholar 

  77. Guo W, Wei F, Zou S, et al. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J Neurosci. 2004;24(41):9161–73.

    CAS  PubMed  Google Scholar 

  78. Ferguson AR, Bolding KA, Huie JR, et al. Group I metabotropic glutamate receptors control metaplasticity of spinal cord learning through a protein kinase C-dependent mechanism. J Neurosci. 2008;28(46):11939–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Sevostianova N, Danysz W. Analgesic effects of mGlu1 and mGlu5 receptor antagonists in the rat formalin test. Neuropharmacology. 2006;51(3):623–30.

    CAS  PubMed  Google Scholar 

  80. Khasabov SG, Rogers SD, Ghilardi JR, et al. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J Neurosci. 2002;22(20):9086–98.

    CAS  PubMed  Google Scholar 

  81. Xu XJ, Dalsgaard CJ, Wiesenfeld-Hallin Z. Spinal substance P and N-methyl-d-aspartate receptors are coactivated in the induction of central sensitization of the nociceptive flexor reflex. Neuroscience. 1992;51(3):641–8.

    CAS  PubMed  Google Scholar 

  82. Cady RJ, Glenn JR, Smith KM, et al. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization. Mol Pain. 2011;7(1):94.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Marquez de Prado B, Hammond DL, Russo AF. Genetic enhancement of calcitonin gene-related Peptide-induced central sensitization to mechanical stimuli in mice. J Pain. 2009;10(9):992–1000.

    CAS  PubMed  Google Scholar 

  84. Sun RQ, Tu YJ, Lawand NB, et al. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol. 2004;92(5):2859–66.

    CAS  PubMed  Google Scholar 

  85. Kawasaki Y, Kohno T, Zhuang ZY, et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci. 2004;24(38):8310–21.

    CAS  PubMed  Google Scholar 

  86. Slack SE, Grist J, Mac Q, et al. TrkB expression and phospho-ERK activation by brain-derived neurotrophic factor in rat spinothalamic tract neurons. J Comp Neurol. 2005;489(1):59–68.

    CAS  PubMed  Google Scholar 

  87. Kerr BJ, Bradbury EJ, Bennett DL, et al. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci. 1999;19(12):5138–48.

    CAS  PubMed  Google Scholar 

  88. Lu VB, Ballanyi K, Colmers WF, et al. Neuron type-specific effects of brain-derived neurotrophic factor in rat superficial dorsal horn and their relevance to 'central sensitization'. J Physiol. 2007;584(Pt 2):543–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Liang YF, Haake B, Reeh PW. Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J Physiol. 2001;532(Pt 1):229–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Schuligoi R, Donnerer J, Amann R. Bradykinin-induced sensitization of afferent neurons in the rat paw. Neuroscience. 1994;59(1):211–5.

    CAS  PubMed  Google Scholar 

  91. Giordano J, Gerstmann H. Patterns of serotonin- and 2-methylserotonin-induced pain may reflect 5-HT3 receptor sensitization. Eur J Pharmacol. 2004;483(2–3):267–9.

    CAS  PubMed  Google Scholar 

  92. Ryu TH, Jung KY, Ha MJ, et al. Superoxide and nitric oxide involvement in enhancing of N-methyl-d-aspartate receptor-mediated central sensitization in the chronic post-ischemia pain model. Korean J Pain. 2010;23(1):1–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Wu J, Fang L, Lin Q, et al. Nitric oxide synthase in spinal cord central sensitization following intradermal injection of capsaicin. Pain. 2001;94(1):47–58.

    CAS  PubMed  Google Scholar 

  94. Lin Q, Palecek J, Paleckova V, et al. Nitric oxide mediates the central sensitization of primate spinothalamic tract neurons. J Neurophysiol. 1999;81(3):1075–85.

    CAS  PubMed  Google Scholar 

  95. Shevelkin AV, Nikitin VP, Kozyrev SA, et al. Serotonin imitates several of the neuronal effects of nociceptive sensitization in the common snail. Neurosci Behav Physiol. 1998;28(5):547–55.

    CAS  PubMed  Google Scholar 

  96. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397–414.

    CAS  PubMed  Google Scholar 

  97. Tonini M. 5-Hydroxytryptamine effects in the gut: the 3, 4, and 7 receptors. Neurogastroenterol Motil. 2005;17(5):637–42.

    CAS  PubMed  Google Scholar 

  98. Spiller R. Recent advances in understanding the role of serotonin in gastrointestinal motility in functional bowel disorders: alterations in 5-HT signalling and metabolism in human disease. Neurogastroenterol Motil. 2007;19 Suppl 2:25–31.

    CAS  PubMed  Google Scholar 

  99. De Giorgio R, Barbara G, Furness JB, et al. Novel therapeutic targets for enteric nervous system disorders. Trends Pharmacol Sci. 2007;28(9):473–81.

    PubMed  Google Scholar 

  100. Kozlowski CM, Green A, Grundy D, et al. The 5-HT(3) receptor antagonist alosetron inhibits the colorectal distention induced depressor response and spinal c-fos expression in the anaesthetised rat. Gut. 2000;46(4):474–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Ford AC, Brandt LJ, Young C, et al. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol. 2009;104(7):1831–43. quiz 1844.

    CAS  PubMed  Google Scholar 

  102. Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983;306(5944):686–8.

    CAS  PubMed  Google Scholar 

  103. Lin Q, Peng YB, Wu J, et al. Involvement of cGMP in nociceptive processing by and sensitization of spinothalamic neurons in primates. J Neurosci. 1997;17(9):3293–302.

    CAS  PubMed  Google Scholar 

  104. Simone DA, Sorkin LS, Oh U, et al. Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol. 1991;66(1):228–46.

    CAS  PubMed  Google Scholar 

  105. Guilbaud G, Benoist JM, Eschalier A, et al. Evidence for peripheral serotonergic mechanisms in the early sensitization after carrageenin-induced inflammation: electrophysiological studies in the ventrobasal complex of the rat thalamus using a potent specific antagonist of peripheral 5-HT receptors. Brain Res. 1989;502(1):187–97.

    CAS  PubMed  Google Scholar 

  106. Burstein R, Yamamura H, Malick A, et al. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol. 1998;79(2):964–82.

    CAS  PubMed  Google Scholar 

  107. Wei F, Zhuo M. Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J Physiol. 2001;532(Pt 3):823–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Kokkinidis L, Borowski TB. Sensitization of mesolimbic brain stimulation reward after electrical kindling of the amygdala. Brain Res Bull. 1991;27(6):791–6.

    CAS  PubMed  Google Scholar 

  109. Hitchcock JM, Sananes CB, Davis M. Sensitization of the startle reflex by footshock: blockade by lesions of the central nucleus of the amygdala or its efferent pathway to the brainstem. Behav Neurosci. 1989;103(3):509–18.

    CAS  PubMed  Google Scholar 

  110. Moylan Governo RJ, Morris PG, Prior MJ, et al. Capsaicin-evoked brain activation and central sensitization in anaesthetised rats: a functional magnetic resonance imaging study. Pain. 2006;126(1–3):35–45.

    CAS  PubMed  Google Scholar 

  111. Maihofner C, Jesberger F, Seifert F, et al. Cortical processing of mechanical hyperalgesia: a MEG study. Eur J Pain. 2010;14(1):64–70.

    PubMed  Google Scholar 

  112. Mohr C, Leyendecker S, Mangels I, et al. Central representation of cold-evoked pain relief in capsaicin induced pain: an event-related fMRI study. Pain. 2008;139(2):416–30.

    CAS  PubMed  Google Scholar 

  113. Shih YY, Chiang YC, Chen JC, et al. Brain nociceptive imaging in rats using (18)f-fluorodeoxyglucose small-animal positron emission tomography. Neuroscience. 2008;155(4):1221–6.

    CAS  PubMed  Google Scholar 

  114. Zhao F, Welsh D, Williams M, et al. fMRI of pain processing in the brain: a within-animal comparative study of BOLD vs. CBV and noxious electrical vs. noxious mechanical stimulation in rat. Neuroimage. 2012;59(2):1168–79.

    PubMed  Google Scholar 

  115. Mohr C, Leyendecker S, Petersen D, et al. Effects of perceived and exerted pain control on neural activity during pain relief in experimental heat hyperalgesia: A fMRI study. Eur J Pain. 2012;16(4):496–508.

    CAS  PubMed  Google Scholar 

  116. Smith JK, Humes DJ, Head KE, et al. fMRI and MEG analysis of visceral pain in healthy volunteers. Neurogastroenterol Motil. 2011;23(7):648–e260.

    CAS  PubMed  Google Scholar 

  117. Koltzenburg M, Lundberg LE, Torebjork HE. Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain. 1992;51(2):207–19.

    CAS  PubMed  Google Scholar 

  118. Neumann S, Doubell TP, Leslie T, et al. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature. 1996;384(6607):360–4.

    CAS  PubMed  Google Scholar 

  119. Sevcik MA, Ghilardi JR, Peters CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain. 2005;115(1–2):128–41.

    CAS  PubMed  Google Scholar 

  120. Mannion RJ, Costigan M, Decosterd I, et al. Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A. 1999;96(16):9385–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Woolf CJ. Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. Philos Trans R Soc Lond B Biol Sci. 1996;351(1338):441–8.

    CAS  PubMed  Google Scholar 

  122. Vasko MR, Campbell WB, Waite KJ. Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J Neurosci. 1994;14(8):4987–97.

    CAS  PubMed  Google Scholar 

  123. Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410(6827):471–5.

    CAS  PubMed  Google Scholar 

  124. Larsson M, Broman J. Translocation of GluR1-containing AMPA receptors to a spinal nociceptive synapse during acute noxious stimulation. J Neurosci. 2008;28(28):7084–90.

    CAS  PubMed  Google Scholar 

  125. Qu XX, Cai J, Li MJ, et al. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol. 2009;215(2):298–307.

    CAS  PubMed  Google Scholar 

  126. Park JS, Voitenko N, Petralia RS, et al. Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons. J Neurosci. 2009;29(10):3206–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Luo C, Seeburg PH, Sprengel R, et al. Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. Pain. 2008;140(2):358–67.

    CAS  PubMed  Google Scholar 

  128. Weyerbacher AR, Xu Q, Tamasdan C, et al. N-Methyl-d-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain. 2010;148(2):237–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Li J, McRoberts JA, Ennes HS, et al. Experimental colitis modulates the functional properties of NMDA receptors in dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol. 2006;291(2):G219–28.

    CAS  PubMed  Google Scholar 

  130. Pitcher MH, Ribeiro-da-Silva A, Coderre TJ. Effects of inflammation on the ultrastructural localization of spinal cord dorsal horn group I metabotropic glutamate receptors. J Comp Neurol. 2007;505(4):412–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Belkind-Gerson, J., Kuo, B. (2015). Etiology and Mechanisms of Chronic Abdominal Pain. In: Kapural, L. (eds) Chronic Abdominal Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1992-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1992-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1991-8

  • Online ISBN: 978-1-4939-1992-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics