Skip to main content

Silicon Probe Techniques for Large-Scale Multiunit Recording

  • Chapter
  • First Online:
Analysis and Modeling of Coordinated Multi-neuronal Activity

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 12))

Abstract

Chapter 1 laid the groundwork for extracellular electrophysiology and the history of microelectrode and microdrive development. However, one of the most technically advanced areas of electrode fabrication is found in the microprobe (e.g., silicon probes) industry where nanoscale fabrication techniques are used to increase recorded neuron yield. To date, these probes have the highest number of contacts per probe and can be combined with integrated circuits, optogenetic control, and drug delivery. This chapter will review a history of development in this field, emphasizing technical advances and what it means for the investigation of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wise KD, Angell JB, Starr A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Bio Med Eng. 1970;17(3):238–47.

    Article  CAS  Google Scholar 

  2. Kindlundh M, Peter N, Hofmann UG. A neural probe process enabling variable electrode configurations. Sensors Actuators. 2004;102(1):51–8.

    Article  CAS  Google Scholar 

  3. Wise KD, Najafi K. Microfabrication techniques for integrated sensors and microsystems. Science. 1991;254(5036):1335–42.

    Article  CAS  PubMed  Google Scholar 

  4. Blum NA, Carkhuff BG, Charles Jr HK, Edwards RL, Meyer RA. Multisite microprobes for neural recordings. IEEE Trans Bio Med Eng. 1991;38(1):68–74.

    Article  CAS  Google Scholar 

  5. Prohaska O, Olcaytug F, Womastek K, Petsche H. A multielectrode for intracortical recordings produced by thin-film technology. Electroencephalogr Clin Neurophysiol. 1977;42(3):421–2.

    Article  CAS  PubMed  Google Scholar 

  6. Bartho P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsaki G. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol. 2004;92(1):600–8.

    Article  PubMed  Google Scholar 

  7. Wise KD. Silicon microsystems for neuroscience and neural prostheses. IEEE Eng Med Biol Mag. 2005;24(5):22–9.

    Article  PubMed  Google Scholar 

  8. BeMent SL, Wise KD, Anderson DJ, Najafi K, Drake KL. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans Bio Med Eng. 1986;33(2):230–41.

    Article  CAS  Google Scholar 

  9. Najafi K, Wise K, Mochizuki T. A high-yield IC-compatible multichannel recording array. IEEE Trans Bio Med Eng. 1985;ED-32(7):1206–11.

    Google Scholar 

  10. Peckerar M, Shihab H, Rebbert M, Kosakowski J, Isaacson P. Passive microelectrode arrays for recording of neural signals: a simplified fabrication process. Rev Sci Instrum. 1991;62:2276–80.

    Article  Google Scholar 

  11. Yu H, Najafi K. Low-power interface circuits for bio-implantable microsystems presented at the Int IEEE Solid-State Circuit Conference (ISSCC), 2003.

    Google Scholar 

  12. Drake KL, Wise KD, Farraye J, Anderson DJ, BeMent SL. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans Bio Med Eng. 1988;35(9):719–32.

    Article  CAS  Google Scholar 

  13. McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods. 1983;8(4):391–7.

    Article  CAS  PubMed  Google Scholar 

  14. Najafi K, Ji J, Wise KD. Scaling limitations of silicon multichannel recording probes. IEEE Trans Bio Med Eng. 1990;37(1):1–11.

    Article  CAS  Google Scholar 

  15. Najafi K, Wise K. Implantable multielectrode array with on-chip signal processing. IEEE International Solid-State Circuit Conference, 1986, p. 98.

    Google Scholar 

  16. Bai Q, Wise KD, Anderson DJ. A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Bio Med Eng. 2000;47(3):281–9.

    Article  CAS  Google Scholar 

  17. Kipke DR, Vetter RJ, Williams JC, Hetke JF. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):151–5.

    Article  PubMed  Google Scholar 

  18. Olsson 3rd RH, Buhl DL, Sirota AM, Buzsaki G, Wise KD. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans Bio Med Eng. 2005;52(7):1303–11.

    Article  Google Scholar 

  19. Yao Y, Gulari MN, Ghimire S, Hetke JF, Wise KD. A low-profile three-dimensional silicon/parylene stimulating electrode array for neural prosthesis applications. Conf Proc IEEE Eng Med Biol Soc. 2005;2:1293–6.

    CAS  PubMed  Google Scholar 

  20. van Horne CG, Bement S, Hoffer BJ, Gerhardt GA. Multichannel semiconductor-based electrodes for in vivo electrochemical and electrophysiological studies in rat CNS. Neurosci Lett. 1990;120(2):249–52.

    Article  PubMed  Google Scholar 

  21. Sreenivas G, Ang SS, Fritsch I, Brown WD, Gerhardt GA, Woodward DJ. Fabrication and characterization of sputtered-carbon microelectrode arrays. Anal Chem. 1996;68(11):1858–64.

    Article  CAS  PubMed  Google Scholar 

  22. Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Bio Med Eng. 1991;38(8):758–68.

    Article  CAS  Google Scholar 

  23. Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992;20(4):423–37.

    Article  CAS  PubMed  Google Scholar 

  24. Rousche PJ, Normann RA. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng. 1992;20(4):413–22.

    Article  CAS  PubMed  Google Scholar 

  25. Nordhausen CT, Maynard EM, Normann RA. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 1996;726(1–2):129–40.

    Article  CAS  PubMed  Google Scholar 

  26. Kuperstein M, Whittington DA. A practical 24 channel microelectrode for neural recording in vivo. IEEE Trans Bio Med Eng. 1981;28(3):288–93.

    Article  CAS  Google Scholar 

  27. Kuperstein M, Eichenbaum H. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode. Neuroscience. 1985;15(3):703–12.

    Article  CAS  PubMed  Google Scholar 

  28. Du J, Riedel-Kruse IH, Nawroth JC, Roukes ML, Laurent G, Masmanidis SC. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays. J Neurophysiol. 2009;101(3):1671–8.

    Article  PubMed  Google Scholar 

  29. Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis SC. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS One. 2011;6(10):e26204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Muthuswamy J, Okandan M, Gilletti A, Baker MS, Jain T. An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents. IEEE Trans Bio Med Eng. 2005;52(8):1470–7.

    Article  Google Scholar 

  31. Vandecasteele M, M S, Royer S, Belluscio M, Berenyi A, Diba K, et al. Large-scale recording of neurons by movable silicon probes in behaving rodents. J Vis Exp. 2012; (61):e3568

    Google Scholar 

  32. Tanghe S, Wise K. A 16-channel CMOS neural stimulating array. IEEE J Solid State Circ. 1992;27:1819–25.

    Article  Google Scholar 

  33. Kim C, Wise K. A 64-site multishank CMOS low-profile neural stimulating probe. IEEE J Solid State Circ. 1996;31(9):1230–8.

    Article  Google Scholar 

  34. Kim C, Wise K. Low-voltage electronics for the stimulation of biological neural networks using fully complementary BiCMOS circuits. IEEE J Solid State Circ. 1997;32(10):1483–90.

    Article  Google Scholar 

  35. Chen J, Wise KD, Hetke JF, Bledsoe Jr SC. A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Bio Med Eng. 1997;44(8):760–9.

    Article  CAS  Google Scholar 

  36. Cheung K, Djupsund K, Dan Y, Lee L. Implantable multichannel electrode array based on SOI technology. J Microelectromech Syst. 2003;12(2):179–84.

    Article  CAS  Google Scholar 

  37. Spieth S, Brett O, Seidl K, Aarts AA, Erismis M, Herwik S, et al. A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording. J Micromech Microeng. 2011;21:1–16.

    Article  Google Scholar 

  38. Stark E, Koos T, Buzsaki G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J Neurophysiol. 2012;108(1):349–63.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Im M, Cho IJ, Wu F, Wise KD, Yoon E. A dual-shank neural probe integrated with double waveguides on each shank for optogenetic applications. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5480–3.

    PubMed  Google Scholar 

  40. Wu F, Stark E, Im M, Cho IJ, Yoon ES, Buzsaki G, et al. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J Neural Eng. 2013;10(5):056012.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Schwaerzle M, Seidl K, Schwarz U, Paul O, Ruther P. Ultracompact optotrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications. IEEE MEMS, 2013, pp. 1029–32.

    Google Scholar 

  42. Wang J, Wagner F, Borton DA, Zhang J, Ozden I, Burwell RD, et al. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng. 2012;9(1):016001.

    Article  PubMed  Google Scholar 

  43. Zhang J, Laiwalla F, Kim JA, Urabe H, Van Wagenen R, Song YK, et al. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J Neural Eng. 2009;6(5):055007.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wise K, Anderson DJ, Hetke J, Kipke DR, Najafi A. Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE. 2004;92(1):76–97.

    Article  CAS  Google Scholar 

  45. Muthuswamy J, Anand S, Sridharan A. Adaptive movable neural interfaces for monitoring single neurons in the brain. Front Neurosci. 2011;5:94.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Mary Steenland, Erik Hopkins, and Dr. Masami Tatsuno for a careful editing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. McNaughton Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steenland, H.W., McNaughton, B.L. (2015). Silicon Probe Techniques for Large-Scale Multiunit Recording. In: Tatsuno, M. (eds) Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Computational Neuroscience, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1969-7_2

Download citation

Publish with us

Policies and ethics