Skip to main content

Information Encoding and Reconstruction by Phase Coding of Spikes

  • Chapter
  • First Online:
Analysis and Modeling of Coordinated Multi-neuronal Activity

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 12))

  • 1706 Accesses

Abstract

Each part of the central nervous system communicates with the others by means of action potentials sent through parallel pathways. Despite the progressively increasing spatial and temporal variation added to the pattern of action potentials at each level of sensory processing, the integrity of information is retained with high precision. What is the mechanism that enables the precise decoding of these action potentials? This chapter is devoted to explaining the transformations of sensory input when information is encoded and decoded in the cortical circuitries. To unravel the full complexity of the problem, we discuss the following questions: Which features of the action potential patterns encode information? What is the relationship between action potentials and oscillations in the brain? What is the segmentation principle of spike processes? How is the precise spatiotemporal pattern of sensory information retained after multiple convergent synaptic transmissions? Is compression involved in the neural information transfer? If so, how is that compressed information decoded in cortical columns? What is the role of gamma oscillations in information encoding and decoding? How are time and space encoded? We illustrate these problems through the example of visual information processing. We contend that phase coding not only answers all these questions, but also provides an efficient, flexible, and biologically plausible model for neural computation. We argue that it is timely to begin thinking of the fundamentals of neural coding in terms of the integration of action potentials and oscillations, which, respectively, constitute the discrete and continuous aspects of neural computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kara P, Reinagel P, Reid RC. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron [Internet]. 2000 Sep 1 [cited 2013 Mar 27];27(3):635–46. Available from: http://www.cell.com/neuron/fulltext/S0896-6273(00)00072-6

  2. Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, et al. Signal timing across the macaque visual system. J Neurophysiol [Internet]. 1998 Jun 1 [cited 2014 Jun 22];79(6):3272–8. Available from: http://jn.physiology.org/content/79/6/3272

  3. Carrasco A, Lomber SG. Neuronal activation times to simple, complex, and natural sounds in cat primary and nonprimary auditory cortex. J Neurophysiol [Internet]. 2011 Sep 1 [cited 2014 Jun 22];106(3):1166–78. Available from: http://jn.physiology.org/content/106/3/1166

  4. Spruston N, Johnston D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol [Internet]. 1992 Mar 1 [cited 2014 Jun 22];67(3):508–29. Available from: http://jn.physiology.org.ezproxy.lib.utexas.edu/content/67/3/508

  5. Branco T, Häusser M. Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron [Internet]. Elsevier; 2011 Mar 10 [cited 2014 May 24];69(5):885–92. Available from: http://www.cell.com/article/S0896627311001036/fulltext

  6. Pouille F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science [Internet]. 2001 Aug 10 [cited 2014 May 27];293(5532):1159–63. Available from: http://www.sciencemag.org/content/293/5532/1159.abstract

  7. Reid RC. Divergence and reconvergence: multielectrode analysis of feedforward connections in the visual system. Prog Brain Res [Internet]. 2001 Jan [cited 2013 Mar 27];130:141–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11480272

  8. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol [Internet]. 1952 Aug [cited 2014 May 26];117(4):500–44. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1392413&tool=pmcentrez&rendertype=abstract

  9. Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci [Internet]. 1998 6 Jun ed. 1998;18(10):3870–96. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9570816

  10. Shmiel T, Drori R, Shmiel O, Ben-Shaul Y, Nadasdy Z, Shemesh M, et al. Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior. Proc Natl Acad Sci U S A [Internet]. 2005 Dec 13 ed. 2005;102(51):18655–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16339894

  11. Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G. Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci [Internet]. 1999 Oct 26 ed. 1999;19(21):9497–507. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10531452

  12. Hatsopoulos N, Geman S, Amarasingham A, Bienenstock E. At what time scale does the nervous system operate? Neurocomputing. 2003;52–54:25–9.

    Article  Google Scholar 

  13. Okun M, Naim A, Lampl I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci [Internet]. 2010 Mar 24 [cited 2013 Mar 4];30(12):4440–8. Available from: http://www.jneurosci.org/content/30/12/4440.abstract

  14. Bennett MV, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron [Internet]. 2004 Feb [cited 2014 May 27];41(4):495–511. Available from: http://www.sciencedirect.com/science/article/pii/S0896627304000431

  15. Anastassiou CA, Perin R, Markram H, Koch C. Ephaptic coupling of cortical neurons. Nat Neurosci [Internet]. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2011 Feb [cited 2013 May 23];14(2):217–23. Available from: http://dx.doi.org/10.1038/nn.2727

  16. Alonso A, Llinas RR. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature [Internet]. 1989 Nov 9 ed. 1989;342(6246):175–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2812013

  17. Llinas R, Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol [Internet]. 1981 Jun 1 ed. 1981;315:569–84. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7310722

  18. Llinás R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol [Internet]. 1986 Jul [cited 2013 Jun 2];376:163–82. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1182792&tool=pmcentrez&rendertype=abstract

  19. White JA, Klink R, Alonso A, Kay AR. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J Neurophysiol [Internet]. 1998 Jul 11 ed. 1998;80(1):262–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9658048

  20. Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci [Internet]. 2000;23(5):216–22. Available from: http://www.sciencedirect.com/science/article/B6T0V-405SNMS-9/2/1ce5d50ef414d6a3cc174e6e9598ae0b

  21. Lagier S, Carleton A, Lledo P-M. Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. J Neurosci [Internet]. 2004 May 5 [cited 2013 May 22];24(18):4382–92. Available from: http://www.jneurosci.org/content/24/18/4382.short

  22. Desmaisons D, Vincent J-D, Lledo P-M. Control of Action Potential Timing by Intrinsic Subthreshold Oscillations in Olfactory Bulb Output Neurons. J Neurosci [Internet]. 1999 Dec 15 [cited 2013 Jun 2];19(24):10727–37. Available from: http://www.jneurosci.org/content/19/24/10727.short

  23. Balu R, Larimer P, Strowbridge BW. Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells. J Neurophysiol [Internet]. 2004 Aug 1 [cited 2013 May 29];92(2):743–53. Available from: http://jn.physiology.org/content/92/2/743.full

  24. Gray CM, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989;86(5):1698–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vinck M, Lima B, Womelsdorf T, Oostenveld R, Singer W, Neuenschwander S, et al. Gamma-phase shifting in awake monkey visual cortex. J Neurosci [Internet]. 2010 Jan 27 [cited 2013 May 24];30(4):1250–7. Available from: http://www.jneurosci.org/content/30/4/1250.long

  26. Castelo-Branco M, Neuenschwander S, Singer W. Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci [Internet]. 1998 Aug 11 ed. 1998;18(16):6395–410. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9698331

  27. Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S. Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr Biol [Internet]. 2008 Mar 11 ed. 2008;18(5):375–80. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18328702

  28. Kayser C, Montemurro MA, Logothetis NK, Panzeri S. Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron [Internet]. 2009 Mar 3 ed. 2009;61(4):597–608. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19249279

  29. Luczak A, Bartho P, Harris KD. Gating of sensory input by spontaneous cortical activity. J Neurosci [Internet]. 2013 Jan 23 [cited 2014 May 26];33(4):1684–95. Available from: http://www.jneurosci.org/content/33/4/1684

  30. Laurent G. Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci [Internet]. 1996 Nov 1 ed. 1996;19(11):489–96. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8931275

  31. O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3(3):317–30.

    Article  PubMed  Google Scholar 

  32. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6(2):149–72.

    Article  CAS  PubMed  Google Scholar 

  33. Hafting T, Fyhn M, Moser M-B, Moser EI. Phase precession and phase locking in entorhinal grid cells, 2006 Neuroscience Meeting. Atlanta, GA: Society for Neuroscience; 2006.

    Google Scholar 

  34. Vinck M, Lima B, Womelsdorf T, Oostenveld R, Singer W, Neuenschwander S, et al. Gamma-phase shifting in awake monkey visual cortex. J Neurosci [Internet]. 2010 Jan 29 ed. 2010;30(4):1250–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20107053

  35. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci. 2002;5(8):805–11.

    Article  CAS  PubMed  Google Scholar 

  36. Harvey CD, Collman F, Dombeck DA, Tank DW. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature [Internet]. 2009 Oct 16 ed. 2009;461(7266):941–6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19829374

  37. Lubenov EV, Siapas AG. Hippocampal theta oscillations are travelling waves. Nature [Internet]. 2009 May 19 ed. 2009; Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19448612

  38. Patel J, Fujisawa S, Berényi A, Royer S, Buzsáki G. Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron [Internet]. 2012 Aug 9 [cited 2013 May 22];75(3):410–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22884325

  39. Pesaran B, Nelson MJ, Andersen RA. Free choice activates a decision circuit between frontal and parietal cortex. Nature [Internet]. 2008 Apr 18 ed. 2008;453(7193):406–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18418380

  40. Siegel M, Warden MR, Miller EK. Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci U S A [Internet]. 2009 Nov 21 ed. 2009;106(50):21341–6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19926847

  41. Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S. The local field potential reflects surplus spike synchrony. Cereb Cortex [Internet]. 2011 Dec 20 [cited 2013 May 23];21(12):2681–95. Available from: http://cercor.oxfordjournals.org/content/early/2011/04/20/cercor.bhr040

  42. Amzica F, Massimini M, Manfridi A. Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci [Internet]. 2002 Feb 1 [cited 2013 Jun 4];22(3):1042–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11826133

  43. Tashiro A, Goldberg J, Yuste R. Calcium oscillations in neocortical astrocytes under epileptiform conditions. J Neurobiol [Internet]. 2002 Jan [cited 2013 Jun 4];50(1):45–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11748632

  44. Donoghue JP, Sanes JN, Hatsopoulos NG, Gaal G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J Neurophysiol [Internet]. 1998 Jan 1 [cited 2013 Jun 2];79(1):159–73. Available from: http://jn.physiology.org/content/79/1/159.long#ref-41

  45. Murthy VN, Fetz EE. Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J Neurophysiol [Internet]. 1996 Dec 1 ed. 1996;76(6):3949–67. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8985892

  46. Poulet JFA, Petersen CCH. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature [Internet]. Macmillan Publishers Limited. All rights reserved; 2008 Aug 14 [cited 2013 May 27];454(7206):881–5. Available from: http://dx.doi.org/10.1038/nature07150

  47. Mitzdorf U. Properties of cortical generators of event-related potentials. Pharmacopsychiatry [Internet]. 1994 Mar 1 ed. 1994;27(2):49–51. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8029310

  48. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev [Internet]. 1985 Jan 1 ed. 1985;65(1):37–100. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3880898

  49. Galambos R, Juhász G, Lorincz M, Szilágyi N. The human Retinal Functional Unit. Int J Psychophysiol [Internet]. 2005 Sep [cited 2013 Jun 8];57(3):187–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15896859

  50. Gollisch T, Meister M. Rapid neural coding in the retina with relative spike latencies. Science [Internet]. 2008;319(5866):1108–11. Available from: http://www.hubmed.org/display.cgi?uids=18292344

  51. Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol [Internet]. 1953 Jan [cited 2013 Jun 9];16(1):37–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13035466

  52. Koepsell K, Wang X, Vaingankar V, Wei Y, Wang Q, Rathbun DL, et al. Retinal oscillations carry visual information to cortex. Front Syst Neurosci [Internet]. 2009 May 1 ed. 2009;3:4. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19404487

  53. Nadasdy Z. Information encoding and reconstruction from the phase of action potentials. Front Syst Neurosci [Internet]. 2009 Aug 12 ed. 2009;3:6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19668700

  54. Westheimer G. Optical superresolution and visual hyperacuity. Prog Retin Eye Res [Internet]. 2012 Sep [cited 2013 Jun 8];31(5):467–80. Available from: http://dx.doi.org/10.1016/j.preteyeres.2012.05.001

  55. Westheimer G, McKee SP. Integration regions for visual hyperacuity. Vision Res [Internet]. 1977 Jan [cited 2013 Jun 8];17(1):89–93. Available from: http://dx.doi.org/10.1016/0042-6989(77)90206-1

  56. Nadasdy Z. Binding by asynchrony: the neuronal phase code. Front Neurosci [Internet]. 2010 Sep 23 ed. 2010;4. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20859525

  57. Willshaw DJ, Der Malsburg C Von. How patterned neural connections can be set up by self-organization. The Royal Society; 2007 Oct 19 [cited 2013 Jun 10]; Available from: http://www.jstor.org.ezproxy.lib.utexas.edu/stable/info/77138

  58. Galli L, Maffei L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science [Internet]. 1988 Oct 7 [cited 2013 Jun 10];242(4875):90–1. Available from: http://www.sciencemag.org/content/242/4875/90.abstract

  59. Chalupa LM. Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections. Neural Dev [Internet]. 2009 Jan [cited 2013 May 23];4(1):25. Available from: http://www.neuraldevelopment.com/content/4/1/25

  60. Darwin RW, Darwin E. New experiments on the ocular spectra of light and colours. By Robert Waring Darwin, M. D.; Communicated by Erasmus Darwin, M. D. F. R. S. The Royal Society; 2007 Nov 5 [cited 2013 Mar 19]; Available from: http://www.jstor.org/stable/info/106628

  61. Neuenschwander S, Castelo-Branco M, Baron J, Singer W. Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway. Philos Trans R Soc L B Biol Sci [Internet]. 2002;357(1428):1869–76. Available from: http://www.hubmed.org/display.cgi?uids=12626020

  62. Sherman SM. The lateral geniculate nucleus : handbook of brain microcircuits. In: Shepherd G, Grillner CTS, editors. Handbook of brain microcircuits [Internet]. New York, NY: Oxford University Press; 2010 [cited 2013 Mar 27]. p. 75–86. Available from: http://oxfordindex.oup.com/view/10.1093/med/9780195389883.003.0008?rskey=UhQYTT&result=25&q=

  63. Van Hooser SD, Heimel JA, Nelson SB. Functional cell classes and functional architecture in the early visual system of a highly visual rodent. Prog Brain Res [Internet]. 2005 Jan [cited 2013 Mar 27];149:127–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16226581

  64. Szentagothai J. The Ferrier Lecture, 1977. The neuron network of the cerebral cortex: a functional interpretation. Proc R Soc L B Biol Sci [Internet]. 1978 May 16 ed. 1978;201(1144):219–48. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=27801

  65. Grinvald A, Lieke EE, Frostig RD, Hildesheim R. Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci [Internet]. 1994;14(5 Pt 1):2545–68. Available from: http://www.hubmed.org/display.cgi?uids=8182427

  66. Prechtl JC, Bullock TH, Kleinfeld D. Direct evidence for local oscillatory current sources and intracortical phase gradients in turtle visual cortex. Proc Natl Acad Sci U S A [Internet]. 2000;97(2):877–82. Available from: http://www.hubmed.org/display.cgi?uids=10639173

  67. Bringuier V, Chavane F, Glaeser L, Fregnac Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science [Internet]. 1999;283(5402):695–9. Available from: http://www.hubmed.org/display.cgi?uids=9924031

  68. Benucci A, Frazor RA, Carandini M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron [Internet]. 2007;55(1):103–17. Available from: http://www.hubmed.org/display.cgi?uids=17610820

  69. Ohki K, Chung S, Kara P, Hübener M, Bonhoeffer T, Reid RC. Highly ordered arrangement of single neurons in orientation pinwheels. Nature [Internet]. 2006 Aug 24 [cited 2013 May 23];442(7105):925–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16906137

  70. Libet B, Wright EW, Feinstein B, Pearl DK. Subjective referral of the timing for a conscious sensory experience: a functional role for the somatosensory specific projection system in man. Brain [Internet]. 1979 Mar [cited 2013 Jun 15];102(1):193–224. Available from: http://www.ncbi.nlm.nih.gov/pubmed/427530

  71. Briggs F, Usrey WM. Corticogeniculate feedback and visual processing in the primate. J Physiol [Internet]. 2011 Jan 1 [cited 2013 May 23];589(Pt 1):33–40. Available from: http://jp.physoc.org/content/589/1/33.full

  72. Ferster D, Lindström S. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J Physiol [Internet]. 1983 Sep [cited 2013 Jun 15];342:181–215. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1193954&tool=pmcentrez&rendertype=abstract

  73. Markram H, Lubke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science [Internet]. 1997;275(5297):213–5. Available from: http://www.hubmed.org/display.cgi?uids=8985014

  74. Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci [Internet]. 1998;18(24):10464–72. Available from: http://www.hubmed.org/display.cgi?uids=9852584

  75. Abeles M. Role of the cortical neuron: integrator or coincidence detector? Isr J Med Sci. 1982 Jan 1 ed. 1982;18(1):83–92.

    Google Scholar 

  76. Kösem A, Gramfort A, van Wassenhove V. Encoding of event timing in the phase of neural oscillations. Neuroimage [Internet]. 2014 May 15 [cited 2014 May 24];92:274–84. Available from: http://www.sciencedirect.com/science/article/pii/S1053811914001013

  77. Friedrich RW, Habermann CJ, Laurent G. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat Neurosci [Internet]. 2004 Jul 27 ed. 2004;7(8):862–71. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15273692

  78. Cassenaer S, Laurent G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature [Internet]. 2007;448(7154):709–13. Available from: http://www.hubmed.org/display.cgi?uids=17581587

  79. Hecht S, Shlaer S. Intermittent stimulation by light: v. the relation between intensity and critical frequency for different parts of the spectrum. J Gen Physiol [Internet]. 1936 Jul 20 [cited 2013 Jun 15];19(6):965–77. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2141480&tool=pmcentrez&rendertype=abstract

Download references

Acknowledgment

I thank Anushri Kushwaha, Peter Nguyen, William S. Shipman, Kate Tevis, and Chandni Mahendru for their editorial work and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Nadasdy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nadasdy, Z. (2015). Information Encoding and Reconstruction by Phase Coding of Spikes. In: Tatsuno, M. (eds) Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Computational Neuroscience, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1969-7_13

Download citation

Publish with us

Policies and ethics