Skip to main content

Techniques for Large-Scale Multiunit Recording

  • Chapter
  • First Online:

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 12))

Abstract

Single and multineuron extracellular electrophysiology has proven to be one of the most effective techniques to explore the behavior of neurons in freely behaving animals since the 1950s. Electrode technology has evolved over the past 60+ years, with improvements in electrode profiles, configurations, biocompatibility, and driving mechanisms leading to substantial gains in the isolation of single neuron activity and increases in the possible number of simultaneously recorded neurons. Moreover, combining electrode recording and nanotechnology with pharmacological and optogenetic manipulations are expected to bring about a new age for precise recording and manipulation of neurons. In this chapter we review the technical developments of extracellular electrophysiology in freely behaving animals, with special emphasis on the development of microelectrode technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Szabo I, Marczynski TJ. A low-noise preamplifier for multisite recording of brain multi-unit activity in freely moving animals. J Neurosci Methods. 1993;47(1–2):33–8. Epub 1993/04/01.

    Article  CAS  PubMed  Google Scholar 

  2. McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods. 1983;8(4):391–7. Epub 1983/08/01.

    Article  CAS  PubMed  Google Scholar 

  3. Fee MS, Mitra PP, Kleinfeld D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods. 1996;69(2):175–88. Epub 1996/11/01.

    Article  CAS  PubMed  Google Scholar 

  4. Einevoll GT, Franke F, Hagen E, Pouzat C, Harris KD. Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Curr Opin Neurobiol. 2012;22(1):11–7. Epub 2011/10/26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Aika Y, Ren JQ, Kosaka K, Kosaka T. Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the dissector. Exp Brain Res. 1994;99(2):267–76. Epub 1994/01/01.

    Article  CAS  PubMed  Google Scholar 

  6. Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol. 2000;84(1):390–400. Epub 2000/07/19.

    CAS  PubMed  Google Scholar 

  7. McNaughton B, inventor. Implantable multi-electrode microdrive array. USA patent 5928143. 1999.

    Google Scholar 

  8. Gray CM, Maldonado PE, Wilson M, McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods. 1995;63(1–2):43–54. Epub 1995/12/01.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science. 1993;261(5124):1055–8. Epub 1993/08/20.

    Article  CAS  PubMed  Google Scholar 

  10. Terzuolo CA, Araki T. An analysis of intra- versus extracellular potential changes associated with activity of single spinal motoneurons. Ann N Y Acad Sci. 1961;94:547–58. Epub 1961/09/06.

    Article  CAS  PubMed  Google Scholar 

  11. Clark J, Plonsey R. The extracellular potential field of the single active nerve fiber in a volume conductor. Biophys J. 1968;8(7):842–64. Epub 1968/07/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Robinson DA. Electrical properties of metal microelectrodes. Proc IEEE. 1968;56(6):1065–71.

    Article  CAS  Google Scholar 

  13. Nelson MJ, Pouget P, Nilsen EA, Patten CD, Schall JD. Review of signal distortion through metal microelectrode recording circuits and filters. J Neurosci Methods. 2008;169(1):141–57. Epub 2008/02/05.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Geddes LA, Baker LE. Principles of applied biomedical instrumentation. New York: Wiley; 1968.

    Google Scholar 

  15. Leung L. Field potential generation and current source density analysis. In: Walz W, editor. New York: Springer; 2010.

    Google Scholar 

  16. Rosenthal F, Woodbury JW, Patton HD. Dipole characteristics of pyramidal cell activity in cat postcruciate cortex. J Neurophysiol. 1966;29(4):612–25. Epub 1966/07/01.

    CAS  PubMed  Google Scholar 

  17. Leung S. Field potential generation and current source density analysis. In: Walz W, editor. Springer; 2011.

    Google Scholar 

  18. Rosenthal F. Extracellular potential fields of single PT-neurons. Brain Res. 1972;36(2):251–63. Epub 1972/01/28.

    Article  CAS  PubMed  Google Scholar 

  19. Beaulieu C, Colonnier M. Effects of the richness of the environment on six different cortical areas of the cat cerebral cortex. Brain Res. 1989;495(2):382–6. Epub 1989/08/28.

    Article  CAS  PubMed  Google Scholar 

  20. Neuman MR. Chapter V: Biopotential electrodes. In: Webster JG, editor. Medical instrumentation application and design. 4th ed. New York: Wiley; 2010.

    Google Scholar 

  21. Riistama J, Lekkala J. Electrode-electrolyte interface properties in implantation conditions. Conf Proc IEEE Eng Med Biol Soc. 2006;1:6021–4. Epub 2007/10/20.

    Article  CAS  PubMed  Google Scholar 

  22. Geddes LA, Da Costa CP, Wise G. The impedance of stainless-steel electrodes. Med Biol Eng. 1971;9(5):511–21. Epub 1971/09/01.

    Article  CAS  PubMed  Google Scholar 

  23. Weale RA. A new micro-electrode for electrophysiological work. Nature. 1951;167(4248):529–30.

    Article  CAS  PubMed  Google Scholar 

  24. Svaetichin G. Electrophysiological investigations on single ganglion cells. Acta Physiol Scand Suppl. 1951;24(86):1–57. Epub 1951/01/01.

    CAS  PubMed  Google Scholar 

  25. Dowben RM, Rose JE. A metal-filled microelectrode. Science. 1953;118(3053):22–4. Epub 1953/07/03.

    Article  CAS  PubMed  Google Scholar 

  26. Gesteland RC, Howland B, Lettvin JY, Pitts WH. Comments on microelectrodes. Proc IRE. 1959;47(11):1856–62.

    Article  Google Scholar 

  27. Hubel DH. Tungsten microelectrode for recording from single units. Science. 1957;125(3247):549–50. Epub 1957/03/22.

    Article  CAS  PubMed  Google Scholar 

  28. Green JD. A simple microelectrode for recording from the central nervous system. Nature. 1958;182(4640):962. Epub 1958/10/04.

    Article  CAS  PubMed  Google Scholar 

  29. Strumwasser F. Long-term recording’ from single neurons in brain of unrestrained mammals. Science. 1958;127(3296):469–70. Epub 1958/02/28.

    Article  CAS  PubMed  Google Scholar 

  30. Wolbarsht ML, Macnichol Jr EF, Wagner HG. Glass insulated platinum microelectrode. Science. 1960;132(3436):1309–10. Epub 1960/11/04.

    Article  CAS  PubMed  Google Scholar 

  31. Baldwin HA, Frenk S, Lettvin JY. Glass-coated tungsten microelectrodes. Science. 1965;148(3676):1462–4. Epub 1965/06/11.

    Article  CAS  PubMed  Google Scholar 

  32. O’Keefe J, Bouma H. Complex sensory properties of certain amygadala units in the freely moving cat. Exp Neurol. 1969;23(3):384–98. Epub 1969/03/01.

    Article  PubMed  Google Scholar 

  33. Parker TD, Strachan DD, Welker WI. Technical contribution. Tungsten ball microelectrode for extracellular single-unit recording. Electroencephalogr Clin Neurophysiol. 1973;35(6):647–51. Epub 1973/12/01.

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki H, Azuma M. A glass-insulated “Elgiloy” microelectrode for recording unit activity in chronic monkey experiments. Electroencephalogr Clin Neurophysiol. 1976;41(1):93–5. Epub 1976/07/01.

    Article  CAS  PubMed  Google Scholar 

  35. Palmer C. A microwire technique for long term recording of single units in the brains of unrestrained animals [proceedings]. J Physiol. 1976;263(1):99P–101. Epub 1976/12/01.

    CAS  PubMed  Google Scholar 

  36. Loeb GE, Bak MJ, Salcman M, Schmidt EM. Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans Biomed Eng. 1977;24(2):121–8. Epub 1977/03/01.

    Article  CAS  PubMed  Google Scholar 

  37. Reece M, O’Keefe JA. The tetrode: a new technique for multi-unit extracellular recording. Soc Neurosci Abstr. 1989;15:1250.

    Google Scholar 

  38. Reitboeck HJ. Fiber microelectrodes for electrophysiological recordings. J Neurosci Methods. 1983;8(3):249–62. Epub 1983/07/01.

    Article  CAS  PubMed  Google Scholar 

  39. Taylor GF. A method of drawing metallic filaments and a discussion of their properties and uses. Phys Rev. 1923;23(5):655–60.

    Article  Google Scholar 

  40. Kaltenbach JA, Gerstein GL. A rapid method for production of sharp tips on preinsulated microwires. J Neurosci Methods. 1986;16(4):283–8. Epub 1986/06/01.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas U, Hohl D, Gerber W, inventors. Microprobe system for stereotactic neurotherapy. USA patent US 6799074 B1. 2004.

    Google Scholar 

  42. Angle MR, Schaefer AT. Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs). PLoS One. 2012;7(8):e43194. Epub 2012/08/21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Marg E, Adams JE. Indwelling multiple micro-electrodes in the brain. Electroencephalogr Clin Neurophysiol. 1967;23(3):277–80. Epub 1967/09/01.

    Article  CAS  PubMed  Google Scholar 

  44. Kubie JL. A driveable bundle of microwires for collecting single-unit data from freely-moving rats. Physiol Behav. 1984;32(1):115–8. Epub 1984/01/01.

    Article  CAS  PubMed  Google Scholar 

  45. Barna JS, Arezzo JC, Vaughan Jr HG. A new multielectrode array for the simultaneous recording of field potentials and unit activity. Electroencephalogr Clin Neurophysiol. 1981;52(5):494–6. Epub 1981/11/01.

    Article  CAS  PubMed  Google Scholar 

  46. Kruger J, Bach M. Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp Brain Res. 1981;41(2):191–4. Epub 1981/01/01.

    Article  CAS  PubMed  Google Scholar 

  47. Verloop AJ, Holsheimer J. A simple method for the construction of electrode arrays. J Neurosci Methods. 1984;11(3):173–8. Epub 1984/08/01.

    Article  CAS  PubMed  Google Scholar 

  48. Jellema T, Weijnen JA. A slim needle-shaped multiwire microelectrode for intracerebral recording. J Neurosci Methods. 1991;40(2–3):203–9. Epub 1991/12/01.

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi H, Suzurikawa J, Nakao M, Mase F, Kaga K. Easy-to-prepare assembly array of tungsten microelectrodes. IEEE Trans Biomed Eng. 2005;52(5):952–6. Epub 2005/05/13.

    Article  PubMed  Google Scholar 

  50. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 2000;408(6810):361–5. Epub 2000/12/01.

    Article  CAS  PubMed  Google Scholar 

  51. Xu CY, Lemon W, Liu C. Design and fabrication of a high-density metal microelectrode array for neural recording. Sens Actuat A Phys. 2002;96(1):78–85.

    Article  CAS  Google Scholar 

  52. Gualtierotti T, Alltucker DS. Prolonged recording from single vestibular units in the frog during plane and space flight, its significance and technique. Aerosp Med. 1967;38(5):513–7. Epub 1967/05/01.

    CAS  PubMed  Google Scholar 

  53. Gualtierotti T, Bailey P. A neutral buoyancy micro-electrode for prolonged recording from single nerve units. Electroencephalogr Clin Neurophysiol. 1968;25(1):77–81. Epub 1968/07/01.

    Article  CAS  PubMed  Google Scholar 

  54. Burns BD, Stean JP, Webb AC. Recording for several days from single cortical neurons in completely unrestrained cats. Electroencephalogr Clin Neurophysiol. 1974;36(3):314–8. Epub 1974/03/01.

    Article  CAS  PubMed  Google Scholar 

  55. Salcman M, Bak MJ. A new chronic recording intracortical microelectrode. Med Biol Eng. 1976;14(1):42–50. Epub 1976/01/01.

    Article  CAS  PubMed  Google Scholar 

  56. Bradley DC, Troyk PR, Berg JA, Bak M, Cogan S, Erickson R, et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. J Neurophysiol. 2005;93(3):1659–70. Epub 2004/09/03.

    Article  CAS  PubMed  Google Scholar 

  57. Musallam S, Bak MJ, Troyk PR, Andersen RA. A floating metal microelectrode array for chronic implantation. J Neurosci Methods. 2007;160(1):122–7. Epub 2006/10/28.

    Article  PubMed  Google Scholar 

  58. Merrill EG, Ainsworth A. Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng. 1972;10(5):662–72. Epub 1972/09/01.

    Article  CAS  PubMed  Google Scholar 

  59. Robinson TF, Hayward BS, Krueger JW, Sonnenblick EH, Wittenberg BA. Isolated heart myocytes: ultrastructural case study technique. J Microsc. 1981;124(Pt 2):135–42. Epub 1981/11/01.

    Article  CAS  PubMed  Google Scholar 

  60. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol. 2008;3(7):434–9.

    Article  CAS  PubMed  Google Scholar 

  61. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  62. Ferguson JE, Boldt C, Redish AD. Creating low-impedance tetrodes by electroplating with additives. Sens Actuat A Phys. 2009;156(2):388–93.

    Article  CAS  Google Scholar 

  63. Gao H, Solages C, Lena C. Tetrode recordings in the cerebellar cortex. J Physiol Paris. 2012;106(3–4):128–36. Epub 2011/11/08.

    Article  PubMed  Google Scholar 

  64. Baranauskas G, Maggiolini E, Castagnola E, Ansaldo A, Mazzoni A, Angotzi GN, et al. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. J Neural Eng. 2011;8(6):066013. Epub 2011/11/09.

    Article  PubMed  Google Scholar 

  65. Ferguson JE, Boldt C, Puhl JG, Stigen TW, Jackson JC, Crisp KM, et al. Nanowires precisely grown on the ends of microwire electrodes permit the recording of intracellular action potentials within deeper neural structures. Nanomedicine (Lond). 2012;7(6):847–53. Epub 2012/04/06.

    Article  CAS  Google Scholar 

  66. Westby GW, Wang H. A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat. J Neurosci Methods. 1997;76(2):123–33. Epub 1997/11/14.

    Article  CAS  PubMed  Google Scholar 

  67. Blum B, Feldman B. A microdrive for the independent manipulation of four microelectrodes. IEEE Trans Biomed Eng. 1965;12(2):121–2. Epub 1965/04/01.

    CAS  PubMed  Google Scholar 

  68. Humphrey DR. A chronically implantable multiple micro-electrode system with independent control of electrode positions. Electroencephalogr Clin Neurophysiol. 1970;29(6):616–20. Epub 1970/12/01.

    Article  CAS  PubMed  Google Scholar 

  69. Ainsworth A, O’Keefe J. A lightweight microdrive for the simultaneous recording of several units in the awake, freely moving rat. J Physiol. 1977;269(1):8P–10. Epub 1977/07/01.

    CAS  PubMed  Google Scholar 

  70. Ranck JJB. A moveable microelectrode for recording single neurons in unrestrained rats. Iowa City: University of Iowa Press; 1973.

    Google Scholar 

  71. Winson J. A compact micro-electrode assembly for recording from the freely-moving rat. Electroencephalogr Clin Neurophysiol. 1973;35(2):215–7. Epub 1973/08/01.

    Article  CAS  PubMed  Google Scholar 

  72. Deadwyler SA, Biela J, Rose G, West M, Lynch G. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats. Electroencephalogr Clin Neurophysiol. 1979;47(6):752–4. Epub 1979/12/01.

    Article  CAS  PubMed  Google Scholar 

  73. Bland BH, Sinclair BR, Jorgenson RG, Keen R. A direct-drive, non-rotating version of Ranck’s microdrive. Physiol Behav. 1980;24(2):395–7. Epub 1980/02/01.

    Article  CAS  PubMed  Google Scholar 

  74. Vertes RP. A device for recording single unit activity in freely-moving rats by a movable fine-wire microelectrode. Electroencephalogr Clin Neurophysiol. 1975;38(1):90–2. Epub 1975/01/01.

    Article  CAS  PubMed  Google Scholar 

  75. Knierim JJ, McNaughton BL, Poe GR. Three-dimensional spatial selectivity of hippocampal neurons during space flight. Nat Neurosci. 2000;3(3):209–10. Epub 2000/03/04.

    Article  CAS  PubMed  Google Scholar 

  76. Gothard KM, Skaggs WE, Moore KM, McNaughton BL. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J Neurosci. 1996;16(2):823–35. Epub 1996/01/15.

    CAS  PubMed  Google Scholar 

  77. Lansink CS, Bakker M, Buster W, Lankelma J, van der Blom R, Westdorp R, et al. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals. J Neurosci Methods. 2007;162(1–2):129–38. Epub 2007/02/20.

    Article  PubMed  Google Scholar 

  78. Kloosterman F, Davidson TJ, Gomperts SN, Layton SP, Hale G, Nguyen DP, et al. Micro-drive array for chronic in vivo recording: drive fabrication. J Vis Exp. 2009. doi:10.3791/1094. Epub 2009/04/22.

    Google Scholar 

  79. Korshunov VA, Averkin RG. A method of extracellular recording of neuronal activity in swimming mice. J Neurosci Methods. 2007;165(2):244–50. Epub 2007/08/03.

    Article  PubMed  Google Scholar 

  80. Findlay AL, Horn G, Stechler G. An electrically operated micro-electrode drive for use on unanaesthetized animals. J Physiol. 1969;204(1):4P–6. Epub 1969/09/01.

    CAS  PubMed  Google Scholar 

  81. Barmack NH, Hayes DF. A stepper motor controlled microdrive for recording from unanesthetized animals. Physiol Behav. 1970;5(6):705–6. Epub 1970/06/01.

    Article  CAS  PubMed  Google Scholar 

  82. Fee MS, Leonardo A. Miniature motorized microdrive and commutator system for chronic neural recording in small animals. J Neurosci Methods. 2001;112(2):83–94. Epub 2001/11/22.

    Article  CAS  PubMed  Google Scholar 

  83. Yamamoto J, Wilson MA. Large-scale chronically implantable precision motorized microdrive array for freely behaving animals. J Neurophysiol. 2008;100(4):2430–40. Epub 2008/08/01.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Cham JG, Branchaud EA, Nenadic Z, Greger B, Andersen RA, Burdick JW. Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials. J Neurophysiol. 2005;93(1):570–9. Epub 2004/07/02.

    Article  PubMed  Google Scholar 

  85. Park S, Yoon E, Lee S, Shin H, Park H, Kim B, et al. The development of a PZT-based microdrive for neural signal recording. Smart Mater Struct. 2008;17:1–7.

    Article  Google Scholar 

  86. Yang S, Cho J, Lee S, Park K, Kim J, Huh Y, et al. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice. J Neurosci Methods. 2011;195(2):117–27. Epub 2010/09/28.

    Article  PubMed  Google Scholar 

  87. Yang S, Lee S, Park K, Jeon H, Huh Y, Cho J, et al. Piezo motor based microdrive for neural signal recording. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3364–7. Epub 2009/01/24.

    PubMed  Google Scholar 

  88. Ludvig N, Mishra PK, Yan QS, Lasley SM, Burger RL, Jobe PC. The combined EEG-intracerebral microdialysis technique: a new tool for neuropharmacological studies on freely behaving animals. J Neurosci Methods. 1992;43(2–3):129–37. Epub 1992/07/01.

    Article  CAS  PubMed  Google Scholar 

  89. Ludvig N, Potter PE, Fox SE. Simultaneous single-cell recording and microdialysis within the same brain site in freely behaving rats: a novel neurobiological method. J Neurosci Methods. 1994;55(1):31–40. Epub 1994/11/01.

    Article  CAS  PubMed  Google Scholar 

  90. Ludvig N, Nguyen MC, Botero JM, Tang HM, Scalia F, Scharf BA, et al. Delivering drugs, via microdialysis, into the environment of extracellularly recorded hippocampal neurons in behaving primates. Brain Res Brain Res Protoc. 2000;5(1):75–84. Epub 2000/03/17.

    Article  CAS  PubMed  Google Scholar 

  91. van Duuren E, van der Plasse G, van der Blom R, Joosten RN, Mulder AB, Pennartz CM, et al. Pharmacological manipulation of neuronal ensemble activity by reverse microdialysis in freely moving rats: a comparative study of the effects of tetrodotoxin, lidocaine, and muscimol. J Pharmacol Exp Ther. 2007;323(1):61–9. Epub 2007/07/14.

    Article  PubMed  Google Scholar 

  92. Ludvig N, Kovacs L, Kando L, Medveczky G, Tang HM, Eberle LP, et al. The use of a remote-controlled minivalve, carried by freely moving animals on their head, to achieve instant pharmacological effects in intracerebral drug-perfusion studies. Brain Res Brain Res Protoc. 2002;9(1):23–31. Epub 2002/02/20.

    Article  CAS  PubMed  Google Scholar 

  93. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci. 2011;34:389–412. Epub 2011/06/23.

    Article  CAS  PubMed  Google Scholar 

  94. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263–8. Epub 2005/08/24.

    Article  CAS  PubMed  Google Scholar 

  95. Siegle JH, Carlen M, Meletis K, Tsai LH, Moore CI, Ritt J. Chronically implanted hyperdrive for cortical recording and optogenetic control in behaving mice. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7529–32. Epub 2012/01/19.

    PubMed  Google Scholar 

  96. Tamura K, Ohashi Y, Tsubota T, Takeuchi D, Hirabayashi T, Yaguchi M, et al. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. J Neurosci Methods. 2012;211(1):49–57. Epub 2012/09/14.

    Article  CAS  PubMed  Google Scholar 

  97. Levick WR. Another tungsten microelectrode. Med Biol Eng. 1972;10(4):510–5. Epub 1972/07/01.

    Article  CAS  PubMed  Google Scholar 

  98. Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7(5):446–51. Epub 2004/04/29.

    Article  CAS  PubMed  Google Scholar 

  99. Guld C. A glass-covered platinum microelectrode. Med Electron Biol Eng. 1964;2:317–27. Epub 1964/07/01.

    Article  CAS  PubMed  Google Scholar 

  100. Sinnamon HM, Woodward DJ. Microdrive and method for single unit recording in the active rat. Physiol Behav. 1977;19(3):451–3. Epub 1977/09/01.

    Article  CAS  PubMed  Google Scholar 

  101. Reitbock HJ, Werner G. Multi-electrode recording-system for the study of spatio-temporal activity patterns of neurons in the central nervous-system. Experientia. 1983;39(3):339–41.

    Article  CAS  PubMed  Google Scholar 

  102. Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, et al. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res. 2007;24(5):1014–25. Epub 2007/04/27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Mary Steenland, Sara-Lynn Pelegrin, Erik Hopkins, and Dr. Masami Tatsuno for a careful editing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. McNaughton Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steenland, H.W., McNaughton, B.L. (2015). Techniques for Large-Scale Multiunit Recording. In: Tatsuno, M. (eds) Analysis and Modeling of Coordinated Multi-neuronal Activity. Springer Series in Computational Neuroscience, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1969-7_1

Download citation

Publish with us

Policies and ethics