Skip to main content

Clinical and Radiographic Considerations in Acute Stroke Triage

  • Chapter
  • First Online:
Neurointervention in the Medical Specialties

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 1599 Accesses

Abstract

Despite approaching a 90 % rate of recanalization, good clinical outcomes are only seen in about 50 % of the patients who undergo stroke intervention. This discrepancy indicates that the recanalization of the artery does not always result in good clinical outcome. Also a subset of patients will not have any significant clinical improvement despite achieving early or late recanalization (Broderick et al., N Engl J Med 368:893–903, 2013; Kidwellet al., N Engl J Med 368:914–923, 2013). Therefore, there is a need to more accurately identify patients who will benefit from early or late recanalization using interventional therapy. Clinical assessment scales like National Institutes of Health Stroke Scale (NIHSS) and Houston Intra-arterial Therapy (HIAT) score can help identify patients with moderate to severe strokes, who may benefit from interventional therapies. The evolution of CT and MR imaging in conjunction with clinical assessment may allow us to further refine our ability to identify subgroups of patients who benefit from stroke intervention. These clinical and imaging criteria for patient selection are the focus of discussion in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saver J, Jahan R, Levy E. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet. 2012;380(9849):1241–9.

    Article  PubMed  Google Scholar 

  2. Nogueira R, Lutsep H, Gupta G, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet. 2012;380(9849):1231–40.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Smith WS, Sung G, Saver J, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke. 2008;39(4):1205–12.

    Article  PubMed  Google Scholar 

  4. Penumbra Pivotal Stroke Trial Investigators. The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009;40(8):2761–8.

    Article  Google Scholar 

  5. Broderick J, Palesch Y, Demchuk A, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368:893–903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Khatri P, Abruzzo T, Yeatts S, et al. Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology. 2009;73(13):1066–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lansberg M, Straka M, Kemp S, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol. 2012;11(10):860–7.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chelsea K, Jahan R, Gornbein J, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368:914–23.

    Article  Google Scholar 

  9. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with Alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–29.

    Article  CAS  PubMed  Google Scholar 

  10. Muir KW, Weir CJ, Murray G, et al. Comparison of neurological scales and scoring systems for acute stroke prognosis. Stroke. 1996;27:1817–20.

    Article  CAS  PubMed  Google Scholar 

  11. Frankel MR, Morgenstern LB, Kwiatkowski T, et al. Predicting prognosis after stroke: a placebo group analysis from the National Institute of Neurological Disorders and Stroke rt-PA Stroke Trial. Neurology. 2000;55:952–9.

    Article  CAS  PubMed  Google Scholar 

  12. Adams Jr HP, Davis PH, Leira EC, et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org10172 in Acute Stroke Treatment (TOAST). Neurology. 1999;53:126–31.

    Article  CAS  PubMed  Google Scholar 

  13. DeGraba TJ, Hallenbeck JM, Pettigrew KD, et al. Progression in acute stroke: value of the initial NIH stroke scale score on patient stratification in future trials. Stroke. 1999;30(6):1208–12.

    Article  CAS  PubMed  Google Scholar 

  14. Fonarow G, Saver J, Smith E, et al. Relationship of National Institutes of health stroke scale to 30-day mortality in medicare beneficiaries with acute ischemic stroke. J Am Heart Assoc. 2012;1:42–50.

    Article  PubMed Central  PubMed  Google Scholar 

  15. The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke. 1997;28:2109–18.

    Article  Google Scholar 

  16. Hallevi H, Barreto AD, Liebeskind DS, et al. Identifying patients at high risk for poor outcome after intra-arterial therapy for acute ischemic stroke. Stroke. 2009;40(5):1780–5.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ann Neurol. 1994; 36:557–60.

    Google Scholar 

  18. Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci. 1987;14:557–9.

    CAS  PubMed  Google Scholar 

  19. Fisher M, Bastan B. Identifying and utilizing the ischemic penumbra. Neurology. 2012;79(13 Suppl 1):S79–85.

    Article  PubMed  Google Scholar 

  20. Baron J. Mapping the ischemic penumbra with PET. Implications for acute stroke treatment. Cerebrovasc Dis. 1999;9:193–201.

    Article  CAS  PubMed  Google Scholar 

  21. Heiss WD. Ischemic penumbra. Evidence from functional imaging I man. J Cereb Blood Flow Metab. 2000;20:1276–93.

    Article  CAS  PubMed  Google Scholar 

  22. Heiss W, Kracht L, Thiel A, Grond M, et al. Penumbral probability thresholds of flumazenil binding and blood flow predicting outcome in patients with cerebral ischemia. Brain. 2001;124:20–9.

    Article  CAS  PubMed  Google Scholar 

  23. Read S, Hirano T, Abott D, et al. The fate of hypoxic tissue on 18-F fluoromisonidazole PET after ischemic stroke. Ann Neurol. 2000;48:228–35.

    Article  CAS  PubMed  Google Scholar 

  24. Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:1017–25.

    Article  CAS  PubMed  Google Scholar 

  25. The National Institute of Neurological Disorders and Stroke rt-PA Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

    Article  Google Scholar 

  26. Scharf J, Brockmann MA, Daffertshofer M, et al. Improvement of sensitivity and interrater reliability to detect acute stroke by dynamic perfusion computed tomography and computed tomography angiography. J Comput Assist Tomogr. 2006;30:105–10.

    Article  PubMed  Google Scholar 

  27. Von Kummer R, Bourquain H, Bastianello S, et al. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology. 2001;219:95–100.

    Article  Google Scholar 

  28. Marks MP, Holmgren EB, Fox AJ, et al. Evaluation of early computed tomographic findings in acute ischemic stroke. Stroke. 1999;30:389–92.

    Article  CAS  PubMed  Google Scholar 

  29. Grond M, von Kummer R, Sobesky J, et al. Early X-ray hypoattenuation of brain parenchyma indicates extended critical hypoperfusion in acute stroke. Stroke. 2000;31:133–9.

    Article  CAS  PubMed  Google Scholar 

  30. Von Kummer R, Bourquain H, Manelfe C, et al. Predictive value of early CT in acute ischemic stroke. Stroke. 1999;30:250.

    Google Scholar 

  31. Jauch EC, Cucchiara B, Adeoye O, et al. Part 11: adult stroke: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S818–28.

    Article  PubMed  Google Scholar 

  32. Barber P, Demchuk A, Zhang J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study group. Alberta Stroke Programme Early CT Score. Lancet. 2000;355(9216):1670–4.

    Article  CAS  PubMed  Google Scholar 

  33. Leys D, Pruvo JP, Godefroy O, et al. Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke. 1992;23(3):317–24.

    Article  CAS  PubMed  Google Scholar 

  34. Tomsick T, Brott T, Barsan W, et al. Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultra early thrombolytic therapy. Am J Neuroradiol. 1996;17:79–85.

    CAS  PubMed  Google Scholar 

  35. Von Kummer R, Holle R, Gizyska U, et al. Interobserver agreement in assessing early CT signs of middle cerebral artery infarction. Am J Neuroradiol. 1996;17:1743–8.

    Google Scholar 

  36. Schriger DL, Kalafut M, Starkman S, et al. Cranial computed tomography interpretation in acute stroke: physician accuracy in determining eligibility for thrombolytic therapy. JAMA. 1998;279:1293–7.

    Article  CAS  PubMed  Google Scholar 

  37. Von Kummer R, Nolte P, Schnittger H, et al. Detectability of cerebral hemisphere ischaemic infarcts by CT within 6h of stroke. Neuroradiology. 1996;38:31–3.

    Article  Google Scholar 

  38. Gupta A, Schaefer P, Chaudhry Z, et al. Interobserver reliability of baseline noncontrast CT Alberta Stroke Program Early CT Score for intra-arterial stroke treatment selection. Am J Neuroradiol. 2012;33(6):1046–9.

    Article  CAS  PubMed  Google Scholar 

  39. Latchaw R, Alberts M, Lev M, et al. American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, and the Interdisciplinary Council on Peripheral Vascular Disease. Stroke. 2009;40(11):3646.

    Article  PubMed  Google Scholar 

  40. Riedel C, Zimmermann P, Jensen-Kondering U, et al. Successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42:1775–7.

    Article  PubMed  Google Scholar 

  41. Menon B, Smith E, Modi J, et al. Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol. 2011;32:1640–5.

    Article  CAS  PubMed  Google Scholar 

  42. Schramm P, Schellinger P, Fiebach J, et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke. 2002;33(10):2426.

    Article  PubMed  Google Scholar 

  43. Wintermark M, Flanders A, Velthuis B, et al. Perfusion CT assessment of infract core and penumbra. Stroke. 2006;37:979–85.

    Article  PubMed  Google Scholar 

  44. Murphy B, Fox A, Sahlas D, et al. Identification of penumbra and infarct in acute stroke using CT perfusion derived blood flow and blood volume measurements. Stroke. 2006;37:1771–7.

    Article  CAS  PubMed  Google Scholar 

  45. Hopvan J, Ciarallo A, Dowlatshahi D, et al. Certainty of stroke diagnosis: incremental benefit with CT perfusion over non contrast CT and CT angiography. Radiology. 2010;255:142–53.

    Article  Google Scholar 

  46. González RG, Schaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210:155–62.

    Article  PubMed  Google Scholar 

  47. Barber PA, Darby DG, Desmond PM, et al. Identification of major ischemic change: diffusion-weighted imaging versus computed tomography. Stroke. 1999;30:2059–65.

    Article  CAS  PubMed  Google Scholar 

  48. Schellinger PD, Bryan RN, Caplan LR, et al. Evidence based guideline: the role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2010;75(2):177–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol. 1992;13:1097–102.

    CAS  PubMed  Google Scholar 

  50. Mintorovitch J, Yang GY, Shimizu H, et al. Diffusion-weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na+, K(+)-ATPase activity. J Cereb Blood Flow Metab. 1994;14:332–6.

    Article  CAS  PubMed  Google Scholar 

  51. Kucharczyk J, Vexler ZS, Roberts TP, et al. Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. Radiology. 1993;188:711–7.

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto K, Lo EH, Pierce AR, et al. Role of vasogenic edema and tissue cavitation in ischemic evolution on diffusion-weighted imaging: comparison with multiparameter MR and immunohistochemistry. AJNR Am J Neuroradiol. 1995;16:1107–15.

    CAS  PubMed  Google Scholar 

  53. Gonzalez RG. Clinical MRI of acute ischemic stroke. J Magn Reson Imaging. 2012;36(2):259–71.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Singer OC, Humpich MC, Fiehler J, et al. Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol. 2008;63(1):52–60.

    Article  PubMed  Google Scholar 

  55. Labeyrie MA, Turc G, et al. Diffusion lesion reversal after thrombolysis: a MR correlate of early neurological improvement. Stroke. 2012;43:2986–91.

    Article  PubMed  Google Scholar 

  56. Chemmanam T, Campbell BC, Christensen S, et al. Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion–diffusion mismatch. Neurology. 2010;75(12):1040–7.

    Article  CAS  PubMed  Google Scholar 

  57. Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60:508–17.

    Article  PubMed  Google Scholar 

  58. Mishra NK, Davis S, et al. Mismatch-based delayed thrombolysis: a meta-analysis. Stroke;41.

    Google Scholar 

  59. Wintermark M, Meuli R, Browaeys P, et al. Comparison of CT perfusion and angiography and MRI in selecting stroke patients for treatment. Neurology. 2007;68:694–7.

    Article  CAS  PubMed  Google Scholar 

  60. Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3h after stroke onset in echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomized trial. Lancet Neurol. 2008;7:299–399.

    Article  PubMed  Google Scholar 

  61. Lansberg MG, Lee J, Christensen S, et al. RAPID automated patient selection for reperfusion therapy. A pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Stroke. 2011;42:1608–14.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Alexandrov AV, Molina CA, Grotta JC, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004;351:2170–8.

    Article  CAS  PubMed  Google Scholar 

  63. Newell DW, Aaslid R. Transcranial Doppler: clinical and experimental uses. Cerebrovasc Brain Metab Rev. 1992;4:122–43.

    CAS  PubMed  Google Scholar 

  64. Babikian VL, Pochay V, Burdette DE, et al. Transcranial Doppler sonographic monitoring in the intensive care unit. J Intensive Care Med. 1991;6:36–44.

    CAS  PubMed  Google Scholar 

  65. Sloan MA, Alexandrov AV, Tegeler CH, Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2004;62:1468–81.

    Article  CAS  PubMed  Google Scholar 

  66. Ringelstein EB, Droste DW, Babikian VL, et al. Consensus on microembolus detection by TCD: International Consensus Group on Microembolic Detection. Stroke. 1998;29:725–9.

    Article  CAS  PubMed  Google Scholar 

  67. Aaslid R. Transcranial Doppler assessment of cerebral vasospasm. Eur J Ultrasound. 2002;16:3–10.

    Article  PubMed  Google Scholar 

  68. Lindegaard KF. The role of transcranial Doppler in the management of patients with subarachnoid haemorrhage: a review. Acta Neurochir Suppl. 1999;72:59–71.

    CAS  PubMed  Google Scholar 

  69. Grosset DG, Straiton J, McDonald I, Cockburn M, Bullock R. Use of transcranial Doppler sonography to predict development of a delayed ischemic deficit after subarachnoid hemorrhage. J Neurosurg. 1993;78:183–7.

    Article  CAS  PubMed  Google Scholar 

  70. Liebeskind DS. Collaterals in acute stroke: beyond the clot. Neuroimaging Clin N Am. 2005;15:553–73.

    Article  PubMed  Google Scholar 

  71. Jo KD, Saver JL, Starkman S, et al. Predictors of recanalization with mechanical thrombectomy for acute ischemic stroke. Stroke;39. Abstract.

    Google Scholar 

  72. Liebeskind DS, Nogueira RG. Angiographic scales in acute ischemic stroke: the MERCI/Multi MERCI experience. Stroke. 2008;39.

    Google Scholar 

  73. Kim G, Chung C, Ovbiagel B, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42:693–9.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Kidwell C, Jahan R, Gornbein J, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368:914–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Nanda M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nanda, A., Vellipuram, A. (2015). Clinical and Radiographic Considerations in Acute Stroke Triage. In: Edgell, R., Savitz, S., Dalfino, J. (eds) Neurointervention in the Medical Specialties. Current Clinical Neurology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1942-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1942-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1941-3

  • Online ISBN: 978-1-4939-1942-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics