Skip to main content

Computational Methods

  • Chapter
  • First Online:
Introduction to Vortex Filaments in Equilibrium

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 849 Accesses

Abstract

Computational methods have been applied to statistical mechanics and combinatorics since the beginnings of electronic computers (e.g., ENIAC) in the 1940s. In this chapter, we give a brief overview of the different computational methods that have been applied to ensembles of vortex filaments, including Numerical PDEs, Monte Carlo and the Metropolis algorithm, Feynman–Kac Path Integral methods, the Demon algorithm, and Hamiltonian flow. Each of these methods has different advantages and disadvantages that we will explore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L.F. BarbĂłn, Black holes, information and holography. J. Phys. 171, 012009 (2009)

    Google Scholar 

  2. C.F. Barenghi, R.J. Donnelly, W.F. Vinen (eds.), Quantized Vortex Dynamics and Superfluid Turbulence (Springer, Berlin, 2001)

    MATH  Google Scholar 

  3. O.N. Boratav, R.B. Pelz, N.J. Zabusky, Reconnection in orthogonally interacting vortex tubes: direct numerical simulations and quantifications. Phys. Fluids A 4(3), 581–605 (1992)

    Article  MATH  Google Scholar 

  4. D.J.E. Callaway, A. Rahman, Microcanonical ensemble formulation of lattice gauge theory. Phys. Rev. Lett. 49(9), 613–616 (1982)

    Article  Google Scholar 

  5. D.J.E. Callaway, A. Rahman, Lattice gauge theory in the microcanonical ensemble. Phys. Rev. D 28(6), 1506–1514 (1983)

    Article  Google Scholar 

  6. D.M. Ceperley, Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279 (1995)

    Article  Google Scholar 

  7. P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni, P. Koumoutsakos, Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Methods Appl. Mech. Eng. 197(13), 1296–1304 (2008)

    Article  MATH  Google Scholar 

  8. A.J. Chorin, Numerical study of slightly viscous flows. J. Fluid Mech. 57, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  9. I.P. Christiansen, Numerical simulation of hydrodynamics by the method of point vortices. J. Comput. Phys. 13(3), 363–379 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. CISL Cisl fy2009 annual report. Technical report, NCAR (2009)

    Google Scholar 

  11. M. Creutz, Microcanonical monte carlo simulation. Phys. Rev. Lett. 50, 1411–1414 (1983)

    Article  MathSciNet  Google Scholar 

  12. I. Danaila, Three-dimensional vortex structure of a fast rotating bose-einstein condensate with harmonic-plus-quartic confinement. Phys. Rev. A 72, 013605 (2005)

    Article  Google Scholar 

  13. I. Danaila, F. Hecht, A finite element method with mesh adaptivity for computing vortex states in fast-rotating boseeinstein condensates. J. Comput. Phys. 229, 6946–6960 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Eckhardt, Stan ulam, john von neumann, and the monte carlo method. Los Alamos Sci. 15, 131–137 (1987)

    MathSciNet  Google Scholar 

  15. R.P. Feynman, J.W. Wheeler, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    Article  Google Scholar 

  16. S.B. Giddings, The black hole information paradox, in Particles, Strings and Cosmology, Johns Hopkins Workshop on Current Problems in Particle Theory 19 and the PASCOS Interdisciplinary Symposium 5 (1995)

    Google Scholar 

  17. W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  18. N.K.-R. Kevlahan, Stochastic differential equation models of vortex merging and reconnection. Phys. Fluids 17, 065107 (2005)

    Article  MathSciNet  Google Scholar 

  19. J.C. Maxwell, Theory of Heat (D. Appleton and Co., New York, 1872)

    Google Scholar 

  20. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  21. J. Preskill, Do black holes destroy information? in International Symposium on Black Holes, Membranes, Wormholes, and Superstrings (1992)

    Google Scholar 

  22. R.L. Ricca, M.A. Berger, Topological ideas and fluid mechanics. Phys. Today 49(12), 28–34 (2008)

    Article  Google Scholar 

  23. Z.S. She, E. Jackson, S.A. Orszag, Statistical aspects of vortex dynamics in turbulence, In New Perspectives in Turbulence (Springer, New York, 1991), pp. 315–328

    Google Scholar 

  24. A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andersen, T.D., Lim, C.C. (2014). Computational Methods. In: Introduction to Vortex Filaments in Equilibrium. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1938-3_8

Download citation

Publish with us

Policies and ethics