Skip to main content

Curved Filaments

  • Chapter
  • First Online:
Introduction to Vortex Filaments in Equilibrium

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 853 Accesses

Abstract

Now that we have looked at straight, parallel filaments, it is time to look at curved ones. Two-dimensional vorticity is a very special case of fluid flow that tends to apply to thin films, atmospheres, and structures with high angular momentum. In aeronautical or hydrodynamical applications such as turbulent sheer flow, vortices can be filaments or rings with a more complex topology such as trefoil knots (Fig. 5.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.F. Barenghi, D.C. Samuels, R.L. Ricca, Complexity measures of tangled vortex filaments, in Tubes, Sheets and Singularities in Fluid Dynamics (Springer, New York, 2002), pp. 69–74

    Google Scholar 

  2. G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, Characterization of reconnecting vortices in superfluid helium. Proc. Natl. Acad. Sci. 105(37), 13707–13710 (2008)

    Article  Google Scholar 

  3. A.J. Callegari, L. Ting, Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J. Appl. Math. 35(1), 148–175 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. N.K.-R. Kevlahan, Stochastic differential equation models of vortex merging and reconnection. Phys. Fluids 17, 065107 (2005)

    Article  MathSciNet  Google Scholar 

  5. D. Kleckner, W.T.M. Irvine, Creation and dynamics of knotted vortices. Nat. Phys. 9, 253–258 (2013)

    Article  Google Scholar 

  6. R. Klein, A. Majda, K. Damodaran, Simplified equation for the interaction of nearly parallel vortex filaments. J. Fluid Mech. 288, 201–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. H.K. Moffatt, The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35(01), 117–129 (1969)

    Article  MATH  Google Scholar 

  8. H.K. Moffatt, R.L. Ricca, Helicity and the calugareanu invariant. Proc. R. Soc. Lond. Ser. A 439(1906), 411–429 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Onsager, Statistical hydrodynamics. Nuovo Cimento Suppl. 6, 279–287 (1949)

    Article  MathSciNet  Google Scholar 

  10. R.L. Ricca, Physical interpretation of certain invariants for vortex filament motion under lia. Phys. Fluids A 4(5), 938–944 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. R.L. Ricca, Structural complexity and dynamical systems, in Lectures on Topological Fluid Mechanics (Springer, New York, 2009), pp. 167–186

    Google Scholar 

  12. L. Ting, R. Klein, Viscous Vortical Flows, vol. 374 of Lecture Notes in Physics (Springer, Berlin, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andersen, T.D., Lim, C.C. (2014). Curved Filaments. In: Introduction to Vortex Filaments in Equilibrium. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1938-3_5

Download citation

Publish with us

Policies and ethics