New Agents for Treating Dry Eye Syndrome

  • Simon E. Skalicky
  • Con Petsoglou
  • Avinash Gurbaxani
  • Clare L. Fraser
  • Peter McCluskey
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Dry eye syndrome (DES) is an ocular surface disorder due to deficient tear volume and/or quality that results in chronic inflammation and surface instability. DES has a considerable impact on visual function, work, and quality of life in up to 30 % of adults. The pathophysiology of DES involves osmotic, mechanical, and inflammatory stress-induced insults resulting in immunological upregulation with inflammatory changes of the pre-corneal tear film, corneal and conjunctival epithelium and corneal subepithelial nerve plexuses. In addition to traditional treatment aimed at improving lubrication of the ocular surface, immune-related molecular targets have been the focus of research aimed at developing therapeutic agents for treating DES. This chapter outlines established, new, and possible future agents useful for the management of DES.

Keywords

Dry Eye Syndrome Anti-inflammatory agents Topical therapies 

Notes

Conflicts of Interest

None

Sources of Funding None

References

  1. 1.
    Reidy JJ. Basic and clinical science course. Section 8. External disease and cornea. San Francisco: American Academy of Ophthalmology; 2008.Google Scholar
  2. 2.
    The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop. Ocul Surf. 2007; 5(2):75–92.Google Scholar
  3. 3.
    Yavuz B, Bozdağ Pehlivan S, Unlü N. An overview on dry eye treatment: approaches for cyclosporin a delivery. Scientific World J. 2012;2012:194848; * A concise overview of the pharmacokinetics of topical cyclosporine and new drug delivery systems.CrossRefGoogle Scholar
  4. 4.
    The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop. Ocul Surf. 2007; 5(2): 93–107.Google Scholar
  5. 5.
    Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol. 2003;136(2):318–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Moss SE, Klein R, Klein BE. Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol. 2000;118(9):1264–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Brewitt H, Sistani F. Dry eye disease: the scale of the problem. Surv Ophthalmol. 2001;45 Suppl 2:S199–202.PubMedCrossRefGoogle Scholar
  8. 8.
    Ding J, Sullivan DA. Aging and dry eye disease. Exp Gerontol. 2012;47(7):483–90.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Guillon M, Maissa C. Contact lens wear affects tear film evaporation. Eye Contact Lens. 2008;34(6):326–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Yee RW, Sperling HG, Kattek A, Paukert MT, Dawson K, Garcia M, Hilsenbeck S. Isolation of the ocular surface to treat dysfunctional tear syndrome associated with computer use. Ocul Surf. 2007;5(4):308–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Pflugfelder SC. Prevalence, burden, and pharmacoeconomics of dry eye disease. Am J Manag Care. 2008;14(3 Suppl):S102–6.PubMedGoogle Scholar
  12. 12.
    Lemp MA. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. CLAO J. 1995;21(4):221–32.PubMedGoogle Scholar
  13. 13.
    Pult H, Purslow C, Murphy PJ. The relationship between clinical signs and dry eye symptoms. Eye (Lond). 2011;25(4):502–10; * A 47-patient cohort study comparing clinical symptoms of dry eye with new and traditional clinical tests. When used in combinations these tests correlate with symptomatic severity of dry eye syndrome.CrossRefGoogle Scholar
  14. 14.
    Li M, Gong L, Sun X, Chapin WJ. Anxiety and depression in patients with dry eye syndrome. Curr Eye Res. 2011;36(1):1–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Miljanovic’ B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol. 2007;143(3):409–15.CrossRefGoogle Scholar
  16. 16.
    McGinnigle S, Naroo SA, Eperjesi F. Evaluation of dry eye. Surv Ophthalmol. 2012;57(4):293–316.PubMedCrossRefGoogle Scholar
  17. 17.
    Luo L, Li DQ, Corrales RM, Pflugfelder SC. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 2005;31(5):186–93.PubMedCrossRefGoogle Scholar
  18. 18.
    De Paiva CS, Pangelinan SB, Chang E, et al. Essential role for c-Jun N-terminal kinase 2 in corneal epithelial response to desiccating stress. Arch Ophthalmol. 2009;127(12):1625–31.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82(4):588–96.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130(1):90–100; ** An excellent overview of the immunopathogenesis of dry eye and the associated molecular targets for anti-inflammatory treatment of dry eye syndrome.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    El Annan J, Chauhan SK, Ecoiffier T, Zhang Q, Saban DR, Dana R. Characterization of effector T cells in dry eye disease. Invest Ophthalmol Vis Sci. 2009;50(8):3802–7.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    De Paiva CS, Chotikavanich S, Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2(3):243–53.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Chen YT, Nikulina K, Lazarev S, et al. Interleukin-1 as a phenotypic immunomodulator in keratinizing squamous metaplasia of the ocular surface in Sjogren’s syndrome. Am J Pathol. 2010;177(3):1333–43.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    De Paiva CS, Villarreal AL, Corrales RM, et al. Dry eye–induced conjunctival epithelial squamous metaplasia is modulated by interferon-γ. Invest Ophthalmol Vis Sci. 2007;48(6):2553–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003;44(1):124–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Goyal S, Chauhan SK, El Annan J, Nallasamy N, Zhang Q, Dana R. Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity? Arch Ophthalmol. 2010;128(7):819–24.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Benıtez-Del-Castillo JM, Acosta MC, Wassfi MA, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci. 2007;48(1):173–81.PubMedCrossRefGoogle Scholar
  28. 28.
    Hosal BM, Ornek N, Zilelioglu G, Elhan AH. Morphology of corneal nerves and corneal sensation in dry eye: a preliminary study. Eye (Lond). 2005;19(12):1276–9.CrossRefGoogle Scholar
  29. 29.
    Yoon KC, Jeong IY, Park YG, Yang SY. Interleukin-6 and tumor necrosis factor-α levels in tears of patients with dry eye syndrome. Cornea. 2007;26(4):431–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Enrıquez-de-Salamanca A, Castellanos E, Stern ME, et al. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis. 2010;16:862–73; * An evaluation of cytokines and other inflammatory molecules in the tear films of patients with mild-to-moderate dry eye syndrome compared to healthy subjects. Interleukin (IL) 1-receptor antagonist, IL-6, IL-8/CXCL-8 and epidermal growth factor levels correlated with symptoms and signs of dry eye syndrome.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Chotikavanich S, de Paiva CS, Li Q, et al. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci. 2009;50(7):3203–9.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Brignole F, Pisella PJ, Goldschild M, De Saint JM, Goguel A, Baudouin C. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci. 2000;41(6):1356–63.PubMedGoogle Scholar
  33. 33.
    Gao J, Morgan G, Tieu D, et al. ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjogrens syndrome-like MRL/lpr mice. Exp Eye Res. 2004;78(4):823–35.PubMedCrossRefGoogle Scholar
  34. 34.
    Zheng X, de Paiva CS, Li DQ, Farley WJ, Pflugfelder SC. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell mediated pathway. Invest Ophthalmol Vis Sci. 2010;51(6):3083–91.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Chauhan SK, Dana R. Role of Th17 cells in the immunopathogenesis of dry eye disease. Mucosal Immunol. 2009;2(4):375–6.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lee JH, Ahn HS, Kim EK, Kim TI. Efficacy of sodium hyaluronate and carboxymethylcellulose in treating mild to moderate dry eye disease. Cornea. 2011;30(2):175–9.PubMedCrossRefGoogle Scholar
  37. 37.
    McDonald CC, Kaye SB, Figueiredo FC, Macintosh G, Lockett C. A randomised, crossover, multicentre study to compare the performance of 0.1% (w/v) sodium hyaluronate with 1.4% (w/v) polyvinyl alcohol in the alleviation of symptoms associated with dry eye syndrome. Eye (Lond). 2002;16(5):601–7.CrossRefGoogle Scholar
  38. 38.
    Brignole F, Pisella PJ, Dupas B, et al. Efficacy and safety of 0.18% sodium hyaluronate in patients with moderate dry eye syndrome and superficial keratitis. Graefes Arch Clin Exp Ophthalmol. 2005;243(6):531–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Lemp MA. Management of dry eye. Am J Manag Care. 2008;14:S088–101.Google Scholar
  40. 40.
    Scaffidi RC, Korb DR. Comparison of the efficacy of two lipid emulsion eyedrops in increasing tear film lipid layer thickness. Eye Contact Lens. 2007;33(1):38–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Benelli U. Systane lubricant eye drops in the management of ocular dryness. Clin Ophthalmol. 2011;5:783–90.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    De Paiva CS, Corrales RM, Villarreal AL, et al. Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol Vis Sci. 2006;47(7):2847–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Lekhanont K, Leyngold IM, Suwan-Apichon O, Rangsin R, Chuck RS. Comparison of topical dry eye medications for the treatment of keratoconjunctivitis sicca in a botulinum toxin B–induced mouse model. Cornea. 2007;26(1):84–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Avunduk AM, Avunduk MC, Varnell ED, Kaufman HE. The comparison of efficacies of topical corticosteroids and nonsteroidal anti-inflammatory drops on dry eye patients: a clinical and immunocytochemical study. Am J Ophthalmol. 2003;136(4):593–602.PubMedCrossRefGoogle Scholar
  46. 46.
    Pflugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.PubMedCrossRefGoogle Scholar
  47. 47.
    Pavesio CE, Decory HH. Treatment of ocular inflammatory conditions with loteprednol etabonate. Br J Ophthalmol. 2008;92:455–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhu L, Zhang C, Chuck RS. Topical steroid and nonsteroidal anti-inflammatory drugs inhibit inflammatory cytokine expression on the ocular surface in the botulinum toxin B-induced murine dry eye model. Mol Vis. 2012;18:1803–12; * Botulin toxin B-induced mouse tear-deficiency dry eye model has been shown to mimic human non-Sjogren’s disease. In this study topical fluoromethalone and not NSAIDs reduced staining of tumour necrosis factor α and IL-1β in corneal and conjunctival epithelia.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Congdon N, Schein O, Kulajta P, Lubomski L, Gilbert D, Katz J. Corneal complications associated with topical ophthalmic use of nonsteroidal anti-inflammatory drugs. J Cataract Refract Surg. 2001;27:622–31.PubMedCrossRefGoogle Scholar
  50. 50.
    De Paiva CS, Corrales RM, Villarreal AL, Farley WJ, Li DQ, Stern ME, Pflugfelder SC. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006;83:526–35.PubMedCrossRefGoogle Scholar
  51. 51.
    Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45:4293–301.PubMedCrossRefGoogle Scholar
  52. 52.
    Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) alpha/beta II. J Biol Chem. 2007;282(20):15208–16.PubMedCrossRefGoogle Scholar
  53. 53.
    Shafaa MW, El Shazly LH, El Shazly AH, El Gohary AA, El Hossary GG. Efficacy of topically applied liposome-bound tetracycline in the treatment of dry eye model. Vet Ophthalmol. 2011;14(1):18–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Veldman P, Colby K. Current evidence for topical azithromycin 1% ophthalmic solution in the treatment of blepharitis and blepharitis-associated ocular dryness. Int Ophthalmol Clin. 2011;51(4):43–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Nichols JJ, Bickle KM, Zink RC, Schiewe MD, Haque RM, Nichols KK. Safety and efficacy of topical azithromycin ophthalmic solution 1.0% in the treatment of contact lens-related dry eye. Eye Contact Lens. 2012;38(2):73–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Ubels JL, MacRae SM. Vitamin A is present as retinol in the tears of humans and rabbits. Curr Eye Res. 1984;3(6):815–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Ubels JL, Foley KM, Rismondo V. Retinol secretion by the lacrimal gland. Invest Ophthalmol Vis Sci. 1986;27(8):1261–8.PubMedGoogle Scholar
  58. 58.
    Odaka A, Toshida H, Ohta T, et al. Efficacy of retinol palmitate eye drops for dry eye in rabbits with lacrimal gland resection. Clin Ophthalmol. 2012;6:1585–93.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Kim EC, Choi JS, Joo CK. A comparison of vitamin a and cyclosporine a 0.05% eye drops for treatment of dry eye syndrome. Am J Ophthalmol. 2009;147(2):206–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Selek H, Unlu N, Orhan M, Irkec M. Evaluation of retinoic acid ophthalmic emulsion in dry eye. Eur J Ophthalmol. 2000;10(2):121–7.PubMedGoogle Scholar
  61. 61.
    Frist-Larsen K, Isager H, Manthorpe R. Sjogren’s syndrome treated with bromhexine: a randomized clinical study. Br Med J. 1978;1:1579–81.CrossRefGoogle Scholar
  62. 62.
    Tauber J, Davitt WF, Bokosky JE, et al. Double-masked, placebo controlled safety and efficacy trial of diquafosol tetrasodium (INS365) ophthalmic solution for the treatment of dry eye. Cornea. 2004;23:784–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Matsumoto Y, Ohashi Y, Watanabe H, Tsubota K. Diquafosol Ophthalmic Solution Phase 2 Study Group. Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese Phase 2 clinical trial. Ophthalmology. 2012;119(10):1954–60; *A randomized, double-masked, multicenter clinical trial comparing topical diquafosol (1%, n = 96, 3%, n = 96) to placebo (n = 94). There was a dose-dependent improvement in fluorescein staining and an improvement in symptom score in both treatment groups.PubMedCrossRefGoogle Scholar
  64. 64.
    Peral A, Domínguez-Godínez CO, Carracedo G, Pintor J. Therapeutic targets in dry eye syndrome. Drug News Perspect. 2008;21(3):166–76.PubMedGoogle Scholar
  65. 65.
    Avni I, Garzozi HJ, Barequet IS, et al. Treatment of dry eye syndrome with orally administered CF101: data from a phase 2 clinical trial. Ophthalmology. 2010;117(7):1287–93.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Kojima T, Higuchi A, Goto E, Matsumoto Y, Dogru M, Tsubota K. Autologous serum eye drops for the treatment of dry eye diseases. Cornea. 2008;27 Suppl 1:S25–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Geerling G, Maclennan S, Hartwig D. Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol. 2004;88:1467–74.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Bradley JC, Simoni J, Bradley RH, McCartney DL, Brown SM. Time- and temperature-dependent stability of growth factor peptides in human autologous serum eye drops. Cornea. 2009;28(2):200–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Kojima T, Ishida R, Dogru M, et al. The effect of autologous serum eye drops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol. 2005;139:242–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Urzua CA, Vasquez DH, Huidobro A, Hernandez H, Alfaro J. Randomized double-blind clinical trial of autologous serum versus artificial tears in dry eye syndrome. Curr Eye Res. 2012;37(8):684–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Donnenfeld E, Pflugfelder SC. Topical ophthalmic cyclosporine: pharmacology and clinical uses. Surv Ophthalmol. 2009;54(3):321–38.PubMedCrossRefGoogle Scholar
  72. 72.
    Eckstein LA, Van Quill KR, Bui SK, et al. Cyclosporin a inhibits calcineurin/nuclear factor of activated T-cells signaling and induces apoptosis in retinoblastoma cells. Invest Ophthalmol Vis Sci. 2005;46:782–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Waldmeier PC, Zimmermann K, Qian T, et al. Cyclophilin D as a drug target. Curr Med Chem. 2003;10:1485–506.PubMedCrossRefGoogle Scholar
  74. 74.
    Brignole F, Pisella PJ, De Saint JM, et al. Flow cytometric analysis of inflammatory markers in KCS: 6- month treatment with topical cyclosporin A. Invest Ophthalmol Vis Sci. 2001;42:90–5.PubMedGoogle Scholar
  75. 75.
    Kunert KS, Tisdale AS, Gipson IK. Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch Ophthalmol. 2002;120:330–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Yoshida A, Fujihara T, Nakata K. Cyclosporin A increases tear fluid secretion via release of sensory neurotransmitters and muscarinic pathway in mice. Exp Eye Res. 1999;68(5):541–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Sall K, Stevenson OD, Mundorf TK, et al. CsA Phase 3 Study Group. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. Ophthalmology. 2000;107:631–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Stevenson D, Tauber J, The RBL, Cyclosporin A. Phase 2 Study Group. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomized trial. Ophthalmology. 2000;107:967–74.PubMedCrossRefGoogle Scholar
  79. 79.
    Liu H, Wang Y, Li S. Advanced delivery of ciclosporin A: present state and perspective. Expert Opin Drug Deliv. 2007;4(4):349–58.PubMedCrossRefGoogle Scholar
  80. 80.
    El Tayar N, Mark AE, Vallat P, et al. Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J Med Chem. 1993;36(24):3757–64.PubMedCrossRefGoogle Scholar
  81. 81.
    Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in glaucoma patients. Am J Ophthalmol. 2012;153(1):1–9.PubMedGoogle Scholar
  82. 82.
    Kanai A, Alba RM, Takano T, et al. The effect on the cornea of alpha cyclodextrin vehicle for cyclosporin eye drops. Transplant Proc. 1989;21(1 pt 3):3150–2.PubMedGoogle Scholar
  83. 83.
    Schechter BA. Ketorolac during the induction phase of cyclosporin-A therapy. J Ocul Pharmacol Ther. 2006;22(2):150–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Milani JK, Pleyer U, Dukes A, et al. Prolongation of corneal allograft survival with liposome-encapsulated cyclosporine in the rat eye. Ophthalmology. 1993;100(6):890–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Dillen K, Bozdag S, Vandervoort J, Ludwig A. Evaluation of the physicochemical characteristics and activity of various kinds of ciprofloxacin HCl-loaded cationic nanoparticles. J Drug Del Sci Technol. 2007;17(1):49–56.Google Scholar
  86. 86.
    Sárdy M, Ruzicka T, Kuhn A. Topical calcineurin inhibitors in cutaneous lupus erythematosus. Arch Dermatol Res. 2009;301(1):93–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Russell JJ. Topical tacrolimus: a new therapy for atopic dermatitis. Am Fam Physician. 2002;66(10):1899–903.PubMedGoogle Scholar
  88. 88.
    Moscovici BK, Holzchuh R, Chiacchio BB, Santo RM, Shimazaki J, Hida RY. Clinical treatment of dry eye using 0.03% tacrolimus eye drops. Cornea. 2012;31(8):945–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Products and technologies. Lux BioSciences. 2011. Available at: http://www.luxbio.com/LX214.htm. Accessed Jul 2012.
  90. 90.
    Ormerod AD. Topical tacrolimus and pimecrolimus and the risk of cancer: How much cause for concern? Br J Dermatol. 2005;153:701–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Aragona P, Bucolo C, Spinella R, Giuffrida S, Ferreri G. Systemic omega-6 essential fatty acid treatment and pge1 tear content in Sjogren’s syndrome patients. Invest Ophthalmol Vis Sci. 2005;46(12):4474–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Rosenberg ES, Asbell PA. Essential fatty acids in the treatment of dry eye. Ocul Surf. 2010;8(1):18–28; *A well-written review of the literature regarding essential fatty acids for the prevention or treatment of dry eye syndrome. All the studies demonstrated that essential fatty acid supplementation resulted in some improvement in dry eye syndrome yet the evidence is not strong.PubMedCrossRefGoogle Scholar
  93. 93.
    Rashid S, Jin Y, Ecoiffier T, Barabino S, Schaumberg D, Dana R. Topical omega-3 and omega-6 fatty acids for treatment of dry eye. Arch Ophthalmol. 2008;126:219–25.PubMedCrossRefGoogle Scholar
  94. 94.
    James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000;71(1 suppl):343S–8.PubMedGoogle Scholar
  95. 95.
    Barabino S, Rolando M, Camicione P, et al. Systemic linoleic and gamma-linolenic acid therapy in dry eye syndrome with an inflammatory component. Cornea. 2003;22:97–101.PubMedCrossRefGoogle Scholar
  96. 96.
    Li N, He J, Schwartz CE, Gjorstrup P, Bazan HE. Resolvin E1 improves tear production and decreases inflammation in a dry eye mouse model. J Ocul Pharmacol Ther. 2010;26(5):431–9.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    US National Institutes of Health Clinical Trials. 2011. Available at: http://clinicaltrials.gov/ct2/show/NCT00799552. Accessed Jul 2012.
  98. 98.
    Takeji Y, Urashima H, Aoki A, Shinohara H. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells. J Ocul Pharmacol Ther. 2012;28(3):259–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Fahmy AM, Hardten DR. Treating ocular surface disease: new agents in development. Clin Ophthalmol. 2011;5:465–72; *A review of new agents in the treatment of ocular surface disease.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Coombs JH, Bloom BJ, Breedveld FC, et al. Improved pain, physical functioning and health status in patients with rheumatoid arthritis treated with CP-690,550, an orally active Janus kinase (JAK) inhibitor: results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2010;69:413–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.PubMedCrossRefGoogle Scholar
  102. 102.
    Ding C, Nandoskar P, Lu M, Thomas P, Trousdale MD, Wang Y. Changes of aquaporins in the lacrimal glands of a rabbit model of Sjögren’s syndrome. Curr Eye Res. 2011;36(6):571–8; * Protein and mRNA levels of aquaporin-4 and -5 were assessed in the lacrimal glands of rabbits with induced autoimmune dacryoadenitis compared to age-matched controls. Levels were altered in the diseased lacrimal glands, being greater or less than normal depending on the site (ductal or acinar cells) and aquaporin type (-4 or -5).PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Ecoiffier T, El Annan J, Rashid S, Schaumberg D, Dana R. Modulation of integrin α4β1 (VLA-4) in dry eye disease. Arch Ophthalmol. 2008;126(12):1695–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol. 2009;182(3):1247–52.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Simon E. Skalicky
    • 1
    • 2
  • Con Petsoglou
    • 1
    • 2
  • Avinash Gurbaxani
    • 1
    • 2
  • Clare L. Fraser
    • 1
    • 2
  • Peter McCluskey
    • 1
    • 2
  1. 1.Save Sight InstituteUniversity of SydneySydneyAustralia
  2. 2.Sydney Eye HospitalSydneyAustralia

Personalised recommendations