Skip to main content

New Agents for Treating Dry Eye Syndrome

  • Chapter
  • First Online:
Studies on the Cornea and Lens

Abstract

Dry eye syndrome (DES) is an ocular surface disorder due to deficient tear volume and/or quality that results in chronic inflammation and surface instability. DES has a considerable impact on visual function, work, and quality of life in up to 30 % of adults. The pathophysiology of DES involves osmotic, mechanical, and inflammatory stress-induced insults resulting in immunological upregulation with inflammatory changes of the pre-corneal tear film, corneal and conjunctival epithelium and corneal subepithelial nerve plexuses. In addition to traditional treatment aimed at improving lubrication of the ocular surface, immune-related molecular targets have been the focus of research aimed at developing therapeutic agents for treating DES. This chapter outlines established, new, and possible future agents useful for the management of DES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reidy JJ. Basic and clinical science course. Section 8. External disease and cornea. San Francisco: American Academy of Ophthalmology; 2008.

    Google Scholar 

  2. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop. Ocul Surf. 2007; 5(2):75–92.

    Google Scholar 

  3. Yavuz B, Bozdağ Pehlivan S, Unlü N. An overview on dry eye treatment: approaches for cyclosporin a delivery. Scientific World J. 2012;2012:194848; * A concise overview of the pharmacokinetics of topical cyclosporine and new drug delivery systems.

    Article  Google Scholar 

  4. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop. Ocul Surf. 2007; 5(2): 93–107.

    Google Scholar 

  5. Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am J Ophthalmol. 2003;136(2):318–26.

    Article  PubMed  Google Scholar 

  6. Moss SE, Klein R, Klein BE. Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol. 2000;118(9):1264–8.

    Article  CAS  PubMed  Google Scholar 

  7. Brewitt H, Sistani F. Dry eye disease: the scale of the problem. Surv Ophthalmol. 2001;45 Suppl 2:S199–202.

    Article  PubMed  Google Scholar 

  8. Ding J, Sullivan DA. Aging and dry eye disease. Exp Gerontol. 2012;47(7):483–90.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Guillon M, Maissa C. Contact lens wear affects tear film evaporation. Eye Contact Lens. 2008;34(6):326–30.

    Article  PubMed  Google Scholar 

  10. Yee RW, Sperling HG, Kattek A, Paukert MT, Dawson K, Garcia M, Hilsenbeck S. Isolation of the ocular surface to treat dysfunctional tear syndrome associated with computer use. Ocul Surf. 2007;5(4):308–15.

    Article  PubMed  Google Scholar 

  11. Pflugfelder SC. Prevalence, burden, and pharmacoeconomics of dry eye disease. Am J Manag Care. 2008;14(3 Suppl):S102–6.

    PubMed  Google Scholar 

  12. Lemp MA. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. CLAO J. 1995;21(4):221–32.

    CAS  PubMed  Google Scholar 

  13. Pult H, Purslow C, Murphy PJ. The relationship between clinical signs and dry eye symptoms. Eye (Lond). 2011;25(4):502–10; * A 47-patient cohort study comparing clinical symptoms of dry eye with new and traditional clinical tests. When used in combinations these tests correlate with symptomatic severity of dry eye syndrome.

    Article  CAS  Google Scholar 

  14. Li M, Gong L, Sun X, Chapin WJ. Anxiety and depression in patients with dry eye syndrome. Curr Eye Res. 2011;36(1):1–7.

    Article  PubMed  Google Scholar 

  15. Miljanovic’ B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol. 2007;143(3):409–15.

    Article  Google Scholar 

  16. McGinnigle S, Naroo SA, Eperjesi F. Evaluation of dry eye. Surv Ophthalmol. 2012;57(4):293–316.

    Article  PubMed  Google Scholar 

  17. Luo L, Li DQ, Corrales RM, Pflugfelder SC. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 2005;31(5):186–93.

    Article  PubMed  Google Scholar 

  18. De Paiva CS, Pangelinan SB, Chang E, et al. Essential role for c-Jun N-terminal kinase 2 in corneal epithelial response to desiccating stress. Arch Ophthalmol. 2009;127(12):1625–31.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82(4):588–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130(1):90–100; ** An excellent overview of the immunopathogenesis of dry eye and the associated molecular targets for anti-inflammatory treatment of dry eye syndrome.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. El Annan J, Chauhan SK, Ecoiffier T, Zhang Q, Saban DR, Dana R. Characterization of effector T cells in dry eye disease. Invest Ophthalmol Vis Sci. 2009;50(8):3802–7.

    Article  PubMed Central  PubMed  Google Scholar 

  22. De Paiva CS, Chotikavanich S, Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009;2(3):243–53.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chen YT, Nikulina K, Lazarev S, et al. Interleukin-1 as a phenotypic immunomodulator in keratinizing squamous metaplasia of the ocular surface in Sjogren’s syndrome. Am J Pathol. 2010;177(3):1333–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. De Paiva CS, Villarreal AL, Corrales RM, et al. Dry eye–induced conjunctival epithelial squamous metaplasia is modulated by interferon-γ. Invest Ophthalmol Vis Sci. 2007;48(6):2553–60.

    Article  PubMed  Google Scholar 

  25. Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003;44(1):124–9.

    Article  PubMed  Google Scholar 

  26. Goyal S, Chauhan SK, El Annan J, Nallasamy N, Zhang Q, Dana R. Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity? Arch Ophthalmol. 2010;128(7):819–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Benıtez-Del-Castillo JM, Acosta MC, Wassfi MA, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci. 2007;48(1):173–81.

    Article  PubMed  Google Scholar 

  28. Hosal BM, Ornek N, Zilelioglu G, Elhan AH. Morphology of corneal nerves and corneal sensation in dry eye: a preliminary study. Eye (Lond). 2005;19(12):1276–9.

    Article  CAS  Google Scholar 

  29. Yoon KC, Jeong IY, Park YG, Yang SY. Interleukin-6 and tumor necrosis factor-α levels in tears of patients with dry eye syndrome. Cornea. 2007;26(4):431–7.

    Article  PubMed  Google Scholar 

  30. Enrıquez-de-Salamanca A, Castellanos E, Stern ME, et al. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis. 2010;16:862–73; * An evaluation of cytokines and other inflammatory molecules in the tear films of patients with mild-to-moderate dry eye syndrome compared to healthy subjects. Interleukin (IL) 1-receptor antagonist, IL-6, IL-8/CXCL-8 and epidermal growth factor levels correlated with symptoms and signs of dry eye syndrome.

    PubMed Central  PubMed  Google Scholar 

  31. Chotikavanich S, de Paiva CS, Li Q, et al. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci. 2009;50(7):3203–9.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Brignole F, Pisella PJ, Goldschild M, De Saint JM, Goguel A, Baudouin C. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest Ophthalmol Vis Sci. 2000;41(6):1356–63.

    CAS  PubMed  Google Scholar 

  33. Gao J, Morgan G, Tieu D, et al. ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and Sjogrens syndrome-like MRL/lpr mice. Exp Eye Res. 2004;78(4):823–35.

    Article  CAS  PubMed  Google Scholar 

  34. Zheng X, de Paiva CS, Li DQ, Farley WJ, Pflugfelder SC. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell mediated pathway. Invest Ophthalmol Vis Sci. 2010;51(6):3083–91.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Chauhan SK, Dana R. Role of Th17 cells in the immunopathogenesis of dry eye disease. Mucosal Immunol. 2009;2(4):375–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lee JH, Ahn HS, Kim EK, Kim TI. Efficacy of sodium hyaluronate and carboxymethylcellulose in treating mild to moderate dry eye disease. Cornea. 2011;30(2):175–9.

    Article  PubMed  Google Scholar 

  37. McDonald CC, Kaye SB, Figueiredo FC, Macintosh G, Lockett C. A randomised, crossover, multicentre study to compare the performance of 0.1% (w/v) sodium hyaluronate with 1.4% (w/v) polyvinyl alcohol in the alleviation of symptoms associated with dry eye syndrome. Eye (Lond). 2002;16(5):601–7.

    Article  CAS  Google Scholar 

  38. Brignole F, Pisella PJ, Dupas B, et al. Efficacy and safety of 0.18% sodium hyaluronate in patients with moderate dry eye syndrome and superficial keratitis. Graefes Arch Clin Exp Ophthalmol. 2005;243(6):531–8.

    Article  CAS  PubMed  Google Scholar 

  39. Lemp MA. Management of dry eye. Am J Manag Care. 2008;14:S088–101.

    Google Scholar 

  40. Scaffidi RC, Korb DR. Comparison of the efficacy of two lipid emulsion eyedrops in increasing tear film lipid layer thickness. Eye Contact Lens. 2007;33(1):38–44.

    Article  PubMed  Google Scholar 

  41. Benelli U. Systane lubricant eye drops in the management of ocular dryness. Clin Ophthalmol. 2011;5:783–90.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. De Paiva CS, Corrales RM, Villarreal AL, et al. Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol Vis Sci. 2006;47(7):2847–56.

    Article  PubMed  Google Scholar 

  44. Lekhanont K, Leyngold IM, Suwan-Apichon O, Rangsin R, Chuck RS. Comparison of topical dry eye medications for the treatment of keratoconjunctivitis sicca in a botulinum toxin B–induced mouse model. Cornea. 2007;26(1):84–9.

    Article  PubMed  Google Scholar 

  45. Avunduk AM, Avunduk MC, Varnell ED, Kaufman HE. The comparison of efficacies of topical corticosteroids and nonsteroidal anti-inflammatory drops on dry eye patients: a clinical and immunocytochemical study. Am J Ophthalmol. 2003;136(4):593–602.

    Article  CAS  PubMed  Google Scholar 

  46. Pflugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.

    Article  CAS  PubMed  Google Scholar 

  47. Pavesio CE, Decory HH. Treatment of ocular inflammatory conditions with loteprednol etabonate. Br J Ophthalmol. 2008;92:455–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu L, Zhang C, Chuck RS. Topical steroid and nonsteroidal anti-inflammatory drugs inhibit inflammatory cytokine expression on the ocular surface in the botulinum toxin B-induced murine dry eye model. Mol Vis. 2012;18:1803–12; * Botulin toxin B-induced mouse tear-deficiency dry eye model has been shown to mimic human non-Sjogren’s disease. In this study topical fluoromethalone and not NSAIDs reduced staining of tumour necrosis factor α and IL-1β in corneal and conjunctival epithelia.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Congdon N, Schein O, Kulajta P, Lubomski L, Gilbert D, Katz J. Corneal complications associated with topical ophthalmic use of nonsteroidal anti-inflammatory drugs. J Cataract Refract Surg. 2001;27:622–31.

    Article  CAS  PubMed  Google Scholar 

  50. De Paiva CS, Corrales RM, Villarreal AL, Farley WJ, Li DQ, Stern ME, Pflugfelder SC. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006;83:526–35.

    Article  PubMed  Google Scholar 

  51. Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45:4293–301.

    Article  PubMed  Google Scholar 

  52. Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) alpha/beta II. J Biol Chem. 2007;282(20):15208–16.

    Article  CAS  PubMed  Google Scholar 

  53. Shafaa MW, El Shazly LH, El Shazly AH, El Gohary AA, El Hossary GG. Efficacy of topically applied liposome-bound tetracycline in the treatment of dry eye model. Vet Ophthalmol. 2011;14(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  54. Veldman P, Colby K. Current evidence for topical azithromycin 1% ophthalmic solution in the treatment of blepharitis and blepharitis-associated ocular dryness. Int Ophthalmol Clin. 2011;51(4):43–52.

    Article  PubMed  Google Scholar 

  55. Nichols JJ, Bickle KM, Zink RC, Schiewe MD, Haque RM, Nichols KK. Safety and efficacy of topical azithromycin ophthalmic solution 1.0% in the treatment of contact lens-related dry eye. Eye Contact Lens. 2012;38(2):73–9.

    Article  PubMed  Google Scholar 

  56. Ubels JL, MacRae SM. Vitamin A is present as retinol in the tears of humans and rabbits. Curr Eye Res. 1984;3(6):815–22.

    Article  CAS  PubMed  Google Scholar 

  57. Ubels JL, Foley KM, Rismondo V. Retinol secretion by the lacrimal gland. Invest Ophthalmol Vis Sci. 1986;27(8):1261–8.

    CAS  PubMed  Google Scholar 

  58. Odaka A, Toshida H, Ohta T, et al. Efficacy of retinol palmitate eye drops for dry eye in rabbits with lacrimal gland resection. Clin Ophthalmol. 2012;6:1585–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Kim EC, Choi JS, Joo CK. A comparison of vitamin a and cyclosporine a 0.05% eye drops for treatment of dry eye syndrome. Am J Ophthalmol. 2009;147(2):206–13.

    Article  CAS  PubMed  Google Scholar 

  60. Selek H, Unlu N, Orhan M, Irkec M. Evaluation of retinoic acid ophthalmic emulsion in dry eye. Eur J Ophthalmol. 2000;10(2):121–7.

    CAS  PubMed  Google Scholar 

  61. Frist-Larsen K, Isager H, Manthorpe R. Sjogren’s syndrome treated with bromhexine: a randomized clinical study. Br Med J. 1978;1:1579–81.

    Article  Google Scholar 

  62. Tauber J, Davitt WF, Bokosky JE, et al. Double-masked, placebo controlled safety and efficacy trial of diquafosol tetrasodium (INS365) ophthalmic solution for the treatment of dry eye. Cornea. 2004;23:784–92.

    Article  CAS  PubMed  Google Scholar 

  63. Matsumoto Y, Ohashi Y, Watanabe H, Tsubota K. Diquafosol Ophthalmic Solution Phase 2 Study Group. Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese Phase 2 clinical trial. Ophthalmology. 2012;119(10):1954–60; *A randomized, double-masked, multicenter clinical trial comparing topical diquafosol (1%, n = 96, 3%, n = 96) to placebo (n = 94). There was a dose-dependent improvement in fluorescein staining and an improvement in symptom score in both treatment groups.

    Article  PubMed  Google Scholar 

  64. Peral A, Domínguez-Godínez CO, Carracedo G, Pintor J. Therapeutic targets in dry eye syndrome. Drug News Perspect. 2008;21(3):166–76.

    CAS  PubMed  Google Scholar 

  65. Avni I, Garzozi HJ, Barequet IS, et al. Treatment of dry eye syndrome with orally administered CF101: data from a phase 2 clinical trial. Ophthalmology. 2010;117(7):1287–93.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Kojima T, Higuchi A, Goto E, Matsumoto Y, Dogru M, Tsubota K. Autologous serum eye drops for the treatment of dry eye diseases. Cornea. 2008;27 Suppl 1:S25–30.

    Article  PubMed  Google Scholar 

  67. Geerling G, Maclennan S, Hartwig D. Autologous serum eye drops for ocular surface disorders. Br J Ophthalmol. 2004;88:1467–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Bradley JC, Simoni J, Bradley RH, McCartney DL, Brown SM. Time- and temperature-dependent stability of growth factor peptides in human autologous serum eye drops. Cornea. 2009;28(2):200–5.

    Article  PubMed  Google Scholar 

  69. Kojima T, Ishida R, Dogru M, et al. The effect of autologous serum eye drops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol. 2005;139:242–6.

    Article  PubMed  Google Scholar 

  70. Urzua CA, Vasquez DH, Huidobro A, Hernandez H, Alfaro J. Randomized double-blind clinical trial of autologous serum versus artificial tears in dry eye syndrome. Curr Eye Res. 2012;37(8):684–8.

    Article  CAS  PubMed  Google Scholar 

  71. Donnenfeld E, Pflugfelder SC. Topical ophthalmic cyclosporine: pharmacology and clinical uses. Surv Ophthalmol. 2009;54(3):321–38.

    Article  PubMed  Google Scholar 

  72. Eckstein LA, Van Quill KR, Bui SK, et al. Cyclosporin a inhibits calcineurin/nuclear factor of activated T-cells signaling and induces apoptosis in retinoblastoma cells. Invest Ophthalmol Vis Sci. 2005;46:782–90.

    Article  PubMed  Google Scholar 

  73. Waldmeier PC, Zimmermann K, Qian T, et al. Cyclophilin D as a drug target. Curr Med Chem. 2003;10:1485–506.

    Article  CAS  PubMed  Google Scholar 

  74. Brignole F, Pisella PJ, De Saint JM, et al. Flow cytometric analysis of inflammatory markers in KCS: 6- month treatment with topical cyclosporin A. Invest Ophthalmol Vis Sci. 2001;42:90–5.

    CAS  PubMed  Google Scholar 

  75. Kunert KS, Tisdale AS, Gipson IK. Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch Ophthalmol. 2002;120:330–7.

    Article  CAS  PubMed  Google Scholar 

  76. Yoshida A, Fujihara T, Nakata K. Cyclosporin A increases tear fluid secretion via release of sensory neurotransmitters and muscarinic pathway in mice. Exp Eye Res. 1999;68(5):541–6.

    Article  CAS  PubMed  Google Scholar 

  77. Sall K, Stevenson OD, Mundorf TK, et al. CsA Phase 3 Study Group. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. Ophthalmology. 2000;107:631–9.

    Article  CAS  PubMed  Google Scholar 

  78. Stevenson D, Tauber J, The RBL, Cyclosporin A. Phase 2 Study Group. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomized trial. Ophthalmology. 2000;107:967–74.

    Article  CAS  PubMed  Google Scholar 

  79. Liu H, Wang Y, Li S. Advanced delivery of ciclosporin A: present state and perspective. Expert Opin Drug Deliv. 2007;4(4):349–58.

    Article  CAS  PubMed  Google Scholar 

  80. El Tayar N, Mark AE, Vallat P, et al. Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J Med Chem. 1993;36(24):3757–64.

    Article  PubMed  Google Scholar 

  81. Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in glaucoma patients. Am J Ophthalmol. 2012;153(1):1–9.

    PubMed  Google Scholar 

  82. Kanai A, Alba RM, Takano T, et al. The effect on the cornea of alpha cyclodextrin vehicle for cyclosporin eye drops. Transplant Proc. 1989;21(1 pt 3):3150–2.

    CAS  PubMed  Google Scholar 

  83. Schechter BA. Ketorolac during the induction phase of cyclosporin-A therapy. J Ocul Pharmacol Ther. 2006;22(2):150–4.

    Article  CAS  PubMed  Google Scholar 

  84. Milani JK, Pleyer U, Dukes A, et al. Prolongation of corneal allograft survival with liposome-encapsulated cyclosporine in the rat eye. Ophthalmology. 1993;100(6):890–6.

    Article  CAS  PubMed  Google Scholar 

  85. Dillen K, Bozdag S, Vandervoort J, Ludwig A. Evaluation of the physicochemical characteristics and activity of various kinds of ciprofloxacin HCl-loaded cationic nanoparticles. J Drug Del Sci Technol. 2007;17(1):49–56.

    CAS  Google Scholar 

  86. Sárdy M, Ruzicka T, Kuhn A. Topical calcineurin inhibitors in cutaneous lupus erythematosus. Arch Dermatol Res. 2009;301(1):93–8.

    Article  PubMed  Google Scholar 

  87. Russell JJ. Topical tacrolimus: a new therapy for atopic dermatitis. Am Fam Physician. 2002;66(10):1899–903.

    PubMed  Google Scholar 

  88. Moscovici BK, Holzchuh R, Chiacchio BB, Santo RM, Shimazaki J, Hida RY. Clinical treatment of dry eye using 0.03% tacrolimus eye drops. Cornea. 2012;31(8):945–9.

    Article  PubMed  Google Scholar 

  89. Products and technologies. Lux BioSciences. 2011. Available at: http://www.luxbio.com/LX214.htm. Accessed Jul 2012.

  90. Ormerod AD. Topical tacrolimus and pimecrolimus and the risk of cancer: How much cause for concern? Br J Dermatol. 2005;153:701–5.

    Article  CAS  PubMed  Google Scholar 

  91. Aragona P, Bucolo C, Spinella R, Giuffrida S, Ferreri G. Systemic omega-6 essential fatty acid treatment and pge1 tear content in Sjogren’s syndrome patients. Invest Ophthalmol Vis Sci. 2005;46(12):4474–9.

    Article  PubMed  Google Scholar 

  92. Rosenberg ES, Asbell PA. Essential fatty acids in the treatment of dry eye. Ocul Surf. 2010;8(1):18–28; *A well-written review of the literature regarding essential fatty acids for the prevention or treatment of dry eye syndrome. All the studies demonstrated that essential fatty acid supplementation resulted in some improvement in dry eye syndrome yet the evidence is not strong.

    Article  PubMed  Google Scholar 

  93. Rashid S, Jin Y, Ecoiffier T, Barabino S, Schaumberg D, Dana R. Topical omega-3 and omega-6 fatty acids for treatment of dry eye. Arch Ophthalmol. 2008;126:219–25.

    Article  CAS  PubMed  Google Scholar 

  94. James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000;71(1 suppl):343S–8.

    CAS  PubMed  Google Scholar 

  95. Barabino S, Rolando M, Camicione P, et al. Systemic linoleic and gamma-linolenic acid therapy in dry eye syndrome with an inflammatory component. Cornea. 2003;22:97–101.

    Article  PubMed  Google Scholar 

  96. Li N, He J, Schwartz CE, Gjorstrup P, Bazan HE. Resolvin E1 improves tear production and decreases inflammation in a dry eye mouse model. J Ocul Pharmacol Ther. 2010;26(5):431–9.

    Article  PubMed Central  PubMed  Google Scholar 

  97. US National Institutes of Health Clinical Trials. 2011. Available at: http://clinicaltrials.gov/ct2/show/NCT00799552. Accessed Jul 2012.

  98. Takeji Y, Urashima H, Aoki A, Shinohara H. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells. J Ocul Pharmacol Ther. 2012;28(3):259–63.

    Article  CAS  PubMed  Google Scholar 

  99. Fahmy AM, Hardten DR. Treating ocular surface disease: new agents in development. Clin Ophthalmol. 2011;5:465–72; *A review of new agents in the treatment of ocular surface disease.

    PubMed Central  PubMed  Google Scholar 

  100. Coombs JH, Bloom BJ, Breedveld FC, et al. Improved pain, physical functioning and health status in patients with rheumatoid arthritis treated with CP-690,550, an orally active Janus kinase (JAK) inhibitor: results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2010;69:413–6.

    Article  CAS  PubMed  Google Scholar 

  101. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–63.

    Article  CAS  PubMed  Google Scholar 

  102. Ding C, Nandoskar P, Lu M, Thomas P, Trousdale MD, Wang Y. Changes of aquaporins in the lacrimal glands of a rabbit model of Sjögren’s syndrome. Curr Eye Res. 2011;36(6):571–8; * Protein and mRNA levels of aquaporin-4 and -5 were assessed in the lacrimal glands of rabbits with induced autoimmune dacryoadenitis compared to age-matched controls. Levels were altered in the diseased lacrimal glands, being greater or less than normal depending on the site (ductal or acinar cells) and aquaporin type (-4 or -5).

    Article  PubMed Central  PubMed  Google Scholar 

  103. Ecoiffier T, El Annan J, Rashid S, Schaumberg D, Dana R. Modulation of integrin α4β1 (VLA-4) in dry eye disease. Arch Ophthalmol. 2008;126(12):1695–9.

    Article  PubMed  Google Scholar 

  104. Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol. 2009;182(3):1247–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of Interest

None

Sources of Funding None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon E. Skalicky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skalicky, S.E., Petsoglou, C., Gurbaxani, A., Fraser, C.L., McCluskey, P. (2015). New Agents for Treating Dry Eye Syndrome. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_7

Download citation

Publish with us

Policies and ethics