Skip to main content

Antioxidant Defense Network in the Lens and Benefits of Glutathione Prodrugs in Cataracts

  • Chapter
  • First Online:
Book cover Studies on the Cornea and Lens

Abstract

Cataract, the opacification of an eye lens, is a common pathological abnormality of the lens that accounts for approximately 50 % of all blindness. Over 40 % of all visits to ophthalmologists by Medicare patients are associated with cataracts and cataract surgery accounts for approximately $5 billion in Medicare payments. The lens depends on a balanced redox state for maintaining its transparency, and a high content of glutathione (GSH) in the lens is believed to play a key role in doing so. Since depletion of GSH has been implicated in the etiology and pathogenesis of cataracts and other eye disorders, a logical approach to drug development would be the prevention of oxidative damage to the lens by the use of GSH prodrugs. GSH may be increased by supplying esters of GSH, γ-glutamylcysteine, cysteine esters, and N-acetylcysteine (NAC). However, their poor bioavailability and toxicity limit their use as a therapeutic agent. A potential candidate for development as a GSH prodrug is the low molecular weight thiol antioxidant, N-acetylcysteineamide (NACA), which has enhanced ability to penetrate cells giving the drug a greater therapeutic index by lowering the risk of side effects. The development of a useful GSH prodrug therapeutic would be a noninvasive, cost-effective, and safer option for both prevention and treatment of cataracts and would significantly improve patient health and the clinical care of cataracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

BSO:

l-Buthionine-(S,R)-sulfoximine

CAT:

Catalase

G6PD:

Glucose-6-phosphate dehydrogenase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GRx:

Glutaredoxin

GS:

Glutamine synthetase

GSH:

Glutathione

GST:

Glutathione-S-transferase

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

Msrs:

Methionine sulfoxide reductases

NAC:

N-acetylcysteine

NACA:

N-acetylcysteineamide

PSSC:

Protein-S-S-cysteine

PSSG:

Protein-S-S-glutathione

PSSP:

Protein-S-S-protein

PUFAs:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TR:

Thioredoxin reductase

Trx:

Thioredoxin

TTase:

Thioltransferase

References

  1. Yanoff M, Duker JS. Ophthalmology. London: Mosby; 1999.

    Google Scholar 

  2. Rosenfeld SI BM, Bobrow JC, et al. Lens and cataracts In: Basic and clinical science course. American Academy of Ophthalmology, San Francisco; 2007e. p. 5–9

    Google Scholar 

  3. Kuszak JRBH. Embryology and anatomy of the lens. In: Albert DMJF, editor. Principles and practice of ophthalmology. Philadelphia: WB Saunders; 1994. p. 82–96.

    Google Scholar 

  4. Rosenfeld SI BM, Bobrow JC, et al. Lens and cataracts In: Basic and clinical science course. American Academy of Ophthalmology, San Francisco; 2007a. p. 19–23

    Google Scholar 

  5. Seland JH. The lens capsule and zonulae. Acta Ophthalmol Suppl. 1992;205:7–12.

    PubMed  Google Scholar 

  6. Brown NP, Bron AJ. Lens structure. In: Brown NP, Bron AJ, Brown NP, editors. Lens disorders: a clinical manual of cataract diagnosis. Oxford: Butterworth-Heinemann; 1996. p. 32–47.

    Google Scholar 

  7. Olivero DK, Furcht LT. Type IV collagen, laminin, and fibronectin promote the adhesion and migration of rabbit lens epithelial cells in vitro. Invest Ophthalmol Vis Sci. 1993;34(10):2825–34.

    CAS  PubMed  Google Scholar 

  8. Lo WK, Harding CV. Tight junctions in the lens epithelia of human and frog: freeze-fracture and protein tracer studies. Invest Ophthalmol Vis Sci. 1983;24(4):396–402.

    CAS  PubMed  Google Scholar 

  9. Patterson JW. Characterization of the equatorial current of the lens. Ophthalmic Res. 1988;20(3):139–42.

    CAS  PubMed  Google Scholar 

  10. Cibis GWBH, Johns K, et al. Fundamentals and principles of ophthalmology. In: Basic and Clinical Science Course. American Academy of Ophthalmology, San Francisco; 2007. p. 323–30.

    Google Scholar 

  11. Rosenfeld SI BM, Bobrow JC, et al. Lens and cataracts In: Basic and clinical science course. American Academy of Ophthalmology, San Francisco; 2007b. p. 11–16

    Google Scholar 

  12. J C. The morphology and visual effects of lens opacities. In: Myron Y, JayS D editors. Ophthalmology. London: Mosby International; 1999. p. 1–2

    Google Scholar 

  13. Rosenfeld SI BM, Bobrow JC, et al. Lens and cataracts In: Basic and clinical science course. American Academy of Ophthalmology, San Francisco; 2007c. p. 75–88

    Google Scholar 

  14. Rosenfeld SI BM, Bobrow JC, et al. Lens and cataracts In: Basic and clinical science course. American Academy of Ophthalmology, San Francisco; 2007d. p. 45–69

    Google Scholar 

  15. Dk C. Cataract formation mechanism. In: Duker MYJS, editor. Ophthalmology. London: Mosby International; 1999. p. 1–8.

    Google Scholar 

  16. Becker M, Rohrschneider K. Ocular manifestations of Wilson disease. Ophthalmologe. 1997;94(11):865–70.

    CAS  PubMed  Google Scholar 

  17. Solberg Y, Rosner M, Belkin M. The association between cigarette smoking and ocular diseases. Surv Ophthalmol. 1998;42(6):535–47.

    CAS  PubMed  Google Scholar 

  18. Flach AJ, Dolan BJ, Sudduth B, Weddell J. Amiodarone-induced lens opacities. Arch Ophthalmol. 1983;101(10):1554–6.

    CAS  PubMed  Google Scholar 

  19. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40. doi:10.1186/1750-1172-1-40.

    PubMed Central  PubMed  Google Scholar 

  20. Grover S, FG. Choroidal dystrophies. In: Myron Y,JayS D, editors. Ophthalmology. London: Mosby International; 1999. p. 1–6

    Google Scholar 

  21. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–91. doi:10.1111/j.1475-1313.2005.00298.x.

    PubMed  Google Scholar 

  22. Terelak-Borys B, Skonieczna K, Grabska-Liberek I. Ocular ischemic syndrome: a systematic review. Med Sci Monit. 2012;18(8):RA138–44.

    PubMed Central  PubMed  Google Scholar 

  23. Jap A, Chee SP. Viral anterior uveitis. Curr Opin Ophthalmol. 2011;22(6):483–8. doi:10.1097/ICU.0b013e32834be021.

    PubMed  Google Scholar 

  24. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84(2–3):131–41.

    CAS  PubMed  Google Scholar 

  25. Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166(12 Pt 2):S4–8. doi:10.1164/rccm.2206007.

    PubMed  Google Scholar 

  26. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31(11):1287–312.

    CAS  PubMed  Google Scholar 

  27. Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med. 1999;31(2):53–9. doi:10.1038/emm.1999.9.

    CAS  PubMed  Google Scholar 

  28. Visconti R, Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel. 2009;12(2):240–5.

    CAS  PubMed  Google Scholar 

  29. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40. doi:10.1016/j.cbi.2005.12.009.

    CAS  PubMed  Google Scholar 

  30. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–44. doi:10.1113/jphysiol.2003.049478.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect. 1985;64:111–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65(1):27–33.

    CAS  PubMed  Google Scholar 

  33. Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol. 2000;304(1):55–68. doi:10.1006/jmbi.2000.4173.

    CAS  PubMed  Google Scholar 

  34. Beebe DC. Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues. Semin Cell Dev Biol. 2008;19(2):125–33. doi:10.1016/j.semcdb.2007.08.014.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 2010;44(3):155–65. doi:10.1159/000316481.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Elanchezhian R, Palsamy P, Madson CJ, Lynch DW, Shinohara T. Age-related cataracts: homocysteine coupled endoplasmic reticulum stress and suppression of Nrf2-dependent antioxidant protection. Chem Biol Interact. 2012;200(1):1–10. doi:10.1016/j.cbi.2012.08.017.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Spector A. Review: oxidative stress and disease. J Ocul Pharmacol Ther. 2000;16(2):193–201.

    CAS  PubMed  Google Scholar 

  38. Srivastava SK, Ansari NH, Bhatnagar A. Sugar induced cataractogenesis: a paradigm of oxidative tissue pathology? Lens Eye Toxic Res. 1990;7(2):161–71.

    CAS  PubMed  Google Scholar 

  39. Varma SD, Kovtun S, Hegde KR. Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists. Eye Contact Lens. 2011;37(4):233–45. doi:10.1097/ICL.0b013e31821ec4f2.

    PubMed Central  PubMed  Google Scholar 

  40. Zhang Y, Ouyang S, Zhang L, Tang X, Song Z, Liu P. Oxygen-induced changes in mitochondrial DNA and DNA repair enzymes in aging rat lens. Mech Ageing Dev. 2010;131(11–12):666–73. doi:10.1016/j.mad.2010.09.003.

    CAS  PubMed  Google Scholar 

  41. Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 2009;11(2):339–53. doi:10.1089/ars.2008.2119.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Fan X, Zhang J, Theves M, Strauch C, Nemet I, Liu X, Qian J, Giblin FJ, Monnier VM. Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes. J Biol Chem. 2009;284(50):34618–27. doi:10.1074/jbc.M109.032094.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Egorov S, Babizhaev MA, Krasnovskii Jr AA, Shvedova AA. Photosensitized generation of singlet molecular oxygen by endogenous substances of the eye lens. Biofizika. 1987;32(1):169–71.

    CAS  PubMed  Google Scholar 

  44. Goosey JD, Zigler Jr JS, Kinoshita JH. Cross-linking of lens crystallins in a photodynamic system: a process mediated by singlet oxygen. Science. 1980;208(4449):1278–80.

    CAS  PubMed  Google Scholar 

  45. Bhuyan DK, Bhuyan KC. Oxy radicals in the eye tissues of rabbits after diquat in vivo. Free Radic Res Commun. 1991;12–13(Pt 2):621–7.

    PubMed  Google Scholar 

  46. Bhuyan KC, Bhuyan DK, Chiu W, Malik S, Fridovich I. Desferal-Mn(III) in the therapy of diquat-induced cataract in rabbit. Arch Biochem Biophys. 1991;288(2):525–32.

    CAS  PubMed  Google Scholar 

  47. Bhuyan KC, Bhuyan DK, Podos SM. Free radical enhancer xenobiotic is an inducer of cataract in rabbit. Free Radic Res Commun. 1991;12–13(Pt 2):609–20.

    PubMed  Google Scholar 

  48. Bhuyan KC, Bhuyan DK, Santos O, Podos SM. Antioxidant and anticataractogenic effects of topical captopril in diquat-induced cataract in rabbits. Free Radic Biol Med. 1992;12(4):251–61.

    CAS  PubMed  Google Scholar 

  49. Babizhaev MA, Deev AI, Vladimirov Iu A, Deeva IB. Decomposition of H2O2 by human cataractous lenses. Biull Eksp Biol Med. 1986;102(8):158–60.

    CAS  PubMed  Google Scholar 

  50. Bhuyan KC, Bhuyan DK. Superoxide dismutase of the eye: relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage. Biochim Biophys Acta. 1978;542(1):28–38.

    CAS  PubMed  Google Scholar 

  51. Bhuyan KC, Master RW, Coles RS, Bhuyan DK. Molecular mechanisms of cataractogenesis: IV. Evidence of phospholipid malondialdehyde adduct in human senile cataract. Mech Ageing Dev. 1986;34(3):289–96.

    CAS  PubMed  Google Scholar 

  52. Fecondo JV, Augusteyn RC. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens. Exp Eye Res. 1983;36(1):15–23.

    CAS  PubMed  Google Scholar 

  53. Rao GN, Sadasivudu B, Cotlier E. Studies on glutathione S-transferase, glutathione peroxidase and glutathione reductase in human normal and cataractous lenses. Ophthalmic Res. 1983;15(4):173–9.

    CAS  PubMed  Google Scholar 

  54. Marsili S, Salganik RI, Albright CD, Freel CD, Johnsen S, Peiffer RL, Costello MJ. Cataract formation in a strain of rats selected for high oxidative stress. Exp Eye Res. 2004;79(5):595–612. doi:10.1016/j.exer.2004.06.008.

    CAS  PubMed  Google Scholar 

  55. Palmquist BM, Philipson B, Barr PO. Nuclear cataract and myopia during hyperbaric oxygen therapy. Br J Ophthalmol. 1984;68(2):113–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139(2):302–10. doi:10.1016/j.ajo.2004.09.046.

    PubMed  Google Scholar 

  57. Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, Malone PE, Mangers SJ, Hou JH, Siegfried CJ, Beebe DC. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 2009;127(4):475–82. doi:10.1001/archophthalmol.2008.621.

    PubMed Central  PubMed  Google Scholar 

  58. Zigler Jr JS, Goosey JD. Singlet oxygen as a possible factor in human senile nuclear cataract development. Curr Eye Res. 1984;3(1):59–65.

    CAS  PubMed  Google Scholar 

  59. Calvin HI, Medvedovsky C, Worgul BV. Near-total glutathione depletion and age-specific cataracts induced by buthionine sulfoximine in mice. Science. 1986;233(4763):553–5.

    CAS  PubMed  Google Scholar 

  60. David LL, Shearer TR. State of sulfhydryl in selenite cataract. Toxicol Appl Pharmacol. 1984;74(1):109–15.

    CAS  PubMed  Google Scholar 

  61. Fu S, Dean R, Southan M, Truscott R. The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem. 1998;273(44):28603–9.

    CAS  PubMed  Google Scholar 

  62. Garner MH, Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci U S A. 1980;77(3):1274–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Giblin FJ. Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther. 2000;16(2):121–35.

    CAS  PubMed  Google Scholar 

  64. Truscott RJ, Augusteyn RC. Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta. 1977;492(1):43–52.

    CAS  PubMed  Google Scholar 

  65. Padgaonkar V, Giblin FJ, Reddy VN. Disulfide cross-linking of urea-insoluble proteins in rabbit lenses treated with hyperbaric oxygen. Exp Eye Res. 1989;49(5):887–99.

    CAS  PubMed  Google Scholar 

  66. Babizhayev MA, Deyev AI, Linberg LF. Lipid peroxidation as a possible cause of cataract. Mech Ageing Dev. 1988;44(1):69–89.

    CAS  PubMed  Google Scholar 

  67. Spector A. The search for a solution to senile cataracts. Proctor lecture. Invest Ophthalmol Vis Sci. 1984;25(2):130–46.

    CAS  PubMed  Google Scholar 

  68. Ottonello S, Foroni C, Carta A, Petrucco S, Maraini G. Oxidative stress and age-related cataract. Ophthalmologica. 2000;214(1):78–85.

    CAS  PubMed  Google Scholar 

  69. Babizhayev MA, Costa EB. Lipid peroxide and reactive oxygen species generating systems of the crystalline lens. Biochim Biophys Acta. 1994;1225(3):326–37.

    CAS  PubMed  Google Scholar 

  70. Dische Z, Zil H. Studies on the oxidation of cysteine to cystine in lens proteins during cataract formation. Am J Ophthalmol. 1951;34(5:2):104–13.

    CAS  PubMed  Google Scholar 

  71. Kleiman NJ, Spector A. DNA single strand breaks in human lens epithelial cells from patients with cataract. Curr Eye Res. 1993;12(5):423–31.

    CAS  PubMed  Google Scholar 

  72. Spector A, Roy D. Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci U S A. 1978;75(7):3244–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Zigler Jr JS, Huang QL, Du XY. Oxidative modification of lens crystallins by H2O2 and chelated iron. Free Radic Biol Med. 1989;7(5):499–505.

    CAS  PubMed  Google Scholar 

  74. Harding JJ, Dilley KJ. Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res. 1976;22(1):1–73.

    CAS  PubMed  Google Scholar 

  75. Rink H. Growth potential, repair capacity and protein synthesis in lens epithelial cells during aging in vitro. Monogr Dev Biol. 1984;17:94–107.

    CAS  PubMed  Google Scholar 

  76. Wannemacher CF, Spector A. Protein synthesis in the core of calf lens. Exp Eye Res. 1968;7(4):623–5.

    CAS  PubMed  Google Scholar 

  77. Bassnett S, Shi Y, Vrensen GF. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci. 2011;366(1568):1250–64. doi:10.1098/rstb.2010.0302.

    PubMed Central  PubMed  Google Scholar 

  78. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992;89(21):10449–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K, Yatin S, Allen K, Aksenov M, Aksenova M, Carney J. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci. 1998;854:448–62.

    CAS  PubMed  Google Scholar 

  80. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev. 1998;30(2):225–43. doi:10.3109/03602539808996310.

    CAS  PubMed  Google Scholar 

  81. Cui XL, Lou MF. The effect and recovery of long-term H2O2 exposure on lens morphology and biochemistry. Exp Eye Res. 1993;57(2):157–67. doi:10.1006/exer.1993.1111.

    CAS  PubMed  Google Scholar 

  82. Lou MF, Dickerson Jr JE, Garadi R. The role of protein-thiol mixed disulfides in cataractogenesis. Exp Eye Res. 1990;50(6):819–26.

    CAS  PubMed  Google Scholar 

  83. Reddy VN. Glutathione and its function in the lens: an overview. Exp Eye Res. 1990;50(6):771–8.

    CAS  PubMed  Google Scholar 

  84. Truscott RJ. Age-related nuclear cataract-oxidation is the key. Exp Eye Res. 2005;80(5):709–25. doi:10.1016/j.exer.2004.12.007.

    CAS  PubMed  Google Scholar 

  85. Dickerson Jr JE, Lou MF. Free cysteine levels in normal human lenses. Exp Eye Res. 1997;65(3):451–4.

    CAS  PubMed  Google Scholar 

  86. Giblin FJ, Padgaonkar VA, Leverenz VR, Lin LR, Lou MF, Unakar NJ, Dang L, Dickerson Jr JE, Reddy VN. Nuclear light scattering, disulfide formation and membrane damage in lenses of older guinea pigs treated with hyperbaric oxygen. Exp Eye Res. 1995;60(3):219–35.

    CAS  PubMed  Google Scholar 

  87. Xu GT, Zigler Jr JS, Lou MF. The possible mechanism of naphthalene cataract in rat and its prevention by an aldose reductase inhibitor (ALO1576). Exp Eye Res. 1992;54(1):63–72.

    CAS  PubMed  Google Scholar 

  88. Zigman S, Paxhia T, McDaniel T, Lou MF, Yu NT. Effect of chronic near-ultraviolet radiation on the gray squirrel lens in vivo. Invest Ophthalmol Vis Sci. 1991;32(6):1723–32.

    CAS  PubMed  Google Scholar 

  89. Lou MF. Redox regulation in the lens. Prog Retin Eye Res. 2003;22(5):657–82.

    CAS  PubMed  Google Scholar 

  90. Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. Biochim Biophys Acta. 2001;1504(2–3):196–219.

    CAS  PubMed  Google Scholar 

  91. Babizhayev MA. Current ocular drug delivery challenges for N-acetylcarnosine: novel patented routes and modes of delivery, design for enhancement of therapeutic activity and drug delivery relationships. Recent Pat Drug Deliv Formul. 2009;3(3):229–65.

    CAS  PubMed  Google Scholar 

  92. Ohira A, Ueda T, Ohishi K, Hiramitsu T, Akeo K, Obara Y. Oxidative stress in ocular disease. Nippon Ganka Gakkai Zasshi. 2008;112(1):22–9.

    CAS  PubMed  Google Scholar 

  93. Nishigori H, Lee JW, Yamauchi Y, Iwatsuru M. The alteration of lipid peroxide in glucocorticoid-induced cataract of developing chick embryos and the effect of ascorbic acid. Curr Eye Res. 1986;5(1):37–40.

    CAS  PubMed  Google Scholar 

  94. Stark G. The effect of ionizing radiation on lipid membranes. Biochim Biophys Acta. 1991;1071(2):103–22.

    CAS  PubMed  Google Scholar 

  95. Yagi K, Komura S, Ihara N, Abe H, Konishi H, Arichi S. Serum lipid peroxide levels in rats with inherited cataracts. J Appl Biochem. 1985;7(3):202–6.

    CAS  PubMed  Google Scholar 

  96. Goosey JD, Tuan WM, Garcia CA. A lipid peroxidative mechanism for posterior subcapsular cataract formation in the rabbit: a possible model for cataract formation in tapetoretinal diseases. Invest Ophthalmol Vis Sci. 1984;25(5):608–12.

    CAS  PubMed  Google Scholar 

  97. Zigler Jr JS, Bodaness RS, Gery I, Kinoshita JH. Effects of lipid peroxidation products on the rat lens in organ culture: a possible mechanism of cataract initiation in retinal degenerative disease. Arch Biochem Biophys. 1983;225(1):149–56.

    CAS  PubMed  Google Scholar 

  98. Zigler Jr JS, Gery I, Kessler D, Kinoshita JH. Macrophage mediated damage to rat lenses in culture: a possible model for uveitis-associated cataract. Invest Ophthalmol Vis Sci. 1983;24(5):651–4.

    CAS  PubMed  Google Scholar 

  99. Zigler Jr JS, Hess HH. Cataracts in the Royal College of Surgeons rat: evidence for initiation by lipid peroxidation products. Exp Eye Res. 1985;41(1):67–76.

    CAS  PubMed  Google Scholar 

  100. Borchman D, Paterson CA, Delamere NA. Oxidative inhibition of Ca2 + -ATPase in the rabbit lens. Invest Ophthalmol Vis Sci. 1989;30(7):1633–7.

    CAS  PubMed  Google Scholar 

  101. Paterson CA, Zeng J, Husseini Z, Borchman D, Delamere NA, Garland D, Jimenez-Asensio J. Calcium ATPase activity and membrane structure in clear and cataractous human lenses. Curr Eye Res. 1997;16(4):333–8.

    CAS  PubMed  Google Scholar 

  102. Ferrer JV, Gasco E, Sastre J, Pallardo FV, Asensi M, Vina J. Age-related changes in glutathione synthesis in the eye lens. Biochem J. 1990;269(2):531–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Shin AH, Oh CJ, Park JW. Glycation-induced inactivation of antioxidant enzymes and modulation of cellular redox status in lens cells. Arch Pharm Res. 2006;29(7):577–81.

    CAS  PubMed  Google Scholar 

  104. Babizhayev MA. Accumulation of lipid peroxidation products in human cataracts. Acta Ophthalmol. 1989;67(3):281–7.

    CAS  Google Scholar 

  105. Borchman D, Yappert MC, Rubini RQ, Paterson CA. Distribution of phospholipid-malondialdehyde-adduct in the human lens. Curr Eye Res. 1989;8(9):939–46.

    CAS  PubMed  Google Scholar 

  106. Kleiman NJ, Wang RR, Spector A. Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells. Mutat Res. 1990;240(1):35–45.

    CAS  PubMed  Google Scholar 

  107. Kleiman NJ, Wang RR, Spector A. Ultraviolet light induced DNA damage and repair in bovine lens epithelial cells. Curr Eye Res. 1990;9(12):1185–93.

    CAS  PubMed  Google Scholar 

  108. Spector A, Kleiman NJ, Huang RR, Wang RR. Repair of H2O2-induced DNA damage in bovine lens epithelial cell cultures. Exp Eye Res. 1989;49(4):685–98.

    CAS  PubMed  Google Scholar 

  109. Dong QY, Cui Y, Chen L, Song J, Sun L. Urinary 8-hydroxydeoxyguanosine levels in diabetic retinopathy patients. Eur J Ophthalmol. 2008;18(1):94–8.

    CAS  PubMed  Google Scholar 

  110. Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health. 1993;40(2–3):391–404. doi:10.1080/15287399309531806.

    CAS  PubMed  Google Scholar 

  111. Bhuyan KC, Bhuyan DK. Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-1H-1,2,4-triazole on catalase and glutathione peroxidase of rabbit eye. Biochim Biophys Acta. 1977;497(3):641–51.

    CAS  PubMed  Google Scholar 

  112. Dwivedi RS, Pratap VB. Alteration in glutathione metabolism during cataract progression. Ophthalmic Res. 1987;19(1):41–4.

    CAS  PubMed  Google Scholar 

  113. Harding JJ. Free and protein-bound glutathione in normal and cataractous human lenses. Biochem J. 1970;117(5):957–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Scharf J, Dovrat A, Gershon D. Defective superoxide-dismutase molecules accumulate with age in human lenses. Graefes Arch Clin Exp Ophthalmol. 1987;225(2):133–6.

    CAS  PubMed  Google Scholar 

  115. Spector A, Garner WH. Hydrogen peroxide and human cataract. Exp Eye Res. 1981;33(6):673–81.

    CAS  PubMed  Google Scholar 

  116. Sweeney MH, Truscott RJ. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp Eye Res. 1998;67(5):587–95. doi:10.1006/exer.1998.0549.

    CAS  PubMed  Google Scholar 

  117. Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16(10):577–86. doi:10.1016/j.jnutbio.2005.05.013.

    CAS  PubMed  Google Scholar 

  118. Lou MF, Dickerson Jr JE. Protein-thiol mixed disulfides in human lens. Exp Eye Res. 1992;55(6):889–96.

    CAS  PubMed  Google Scholar 

  119. Rathbun WB. Lenticular glutathione synthesis: rate-limiting factors in its regulation and decline. Curr Eye Res. 1984;3(1):101–8.

    CAS  PubMed  Google Scholar 

  120. Yan H, Harding JJ, Xing K, Lou MF. Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with alpha-crystallin or thioltransferase. Curr Eye Res. 2007;32(5):455–63. doi:10.1080/02713680701257837.

    CAS  PubMed  Google Scholar 

  121. Takemoto L. Increase in the intramolecular disulfide bonding of alpha-A crystallin during aging of the human lens. Exp Eye Res. 1996;63(5):585–90. doi:10.1006/exer.1996.0149.

    CAS  PubMed  Google Scholar 

  122. Lou MF, McKellar R, Chyan O. Quantitation of lens protein mixed disulfides by ion-exchange chromatography. Exp Eye Res. 1986;42(6):607–16.

    CAS  PubMed  Google Scholar 

  123. Laver NM, Robison Jr WG, Calvin HI, Fu SC. Early epithelial lesions in cataracts of GSH-depleted mouse pups. Exp Eye Res. 1993;57(4):493–8.

    CAS  PubMed  Google Scholar 

  124. Martensson J, Steinherz R, Jain A, Meister A. Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithelial cell damage. Proc Natl Acad Sci U S A. 1989;86(22):8727–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. McGinty SJ, Truscott RJ. Presbyopia: the first stage of nuclear cataract? Ophthalmic Res. 2006;38(3):137–48. doi:10.1159/000090645.

    CAS  PubMed  Google Scholar 

  126. Pirie A. A light-calalysed reaction in the aqueous humor of the eye. Nature. 1965;205:500–1.

    CAS  PubMed  Google Scholar 

  127. Bunce GE, Kinoshita J, Horwitz J. Nutritional factors in cataract. Annu Rev Nutr. 1990;10:233–54. doi:10.1146/annurev.nu.10.070190.001313.

    CAS  PubMed  Google Scholar 

  128. Reddy VN, Giblin FJ, Lin LR, Chakrapani B. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium. Invest Ophthalmol Vis Sci. 1998;39(2):344–50.

    CAS  PubMed  Google Scholar 

  129. Blondin J, Taylor A. Measures of leucine aminopeptidase can be used to anticipate UV-induced age-related damage to lens proteins: ascorbate can delay this damage. Mech Ageing Dev. 1987;41(1–2):39–46.

    CAS  PubMed  Google Scholar 

  130. Devamanoharan PS, Henein M, Morris S, Ramachandran S, Richards RD, Varma SD. Prevention of selenite cataract by vitamin C. Exp Eye Res. 1991;52(5):563–8.

    CAS  PubMed  Google Scholar 

  131. Varma SD, Kumar S, Richards RD. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci U S A. 1979;76(7):3504–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Varma SD, Srivastava VK, Richards RD. Photoperoxidation in lens and cataract formation: preventive role of superoxide dismutase, catalase and vitamin C. Ophthalmic Res. 1982;14(3):167–75.

    CAS  PubMed  Google Scholar 

  133. Stephens RJ, Negi DS, Short SM, van Kuijk FJ, Dratz EA, Thomas DW. Vitamin E distribution in ocular tissues following long-term dietary depletion and supplementation as determined by microdissection and gas chromatography-mass spectrometry. Exp Eye Res. 1988;47(2):237–45.

    CAS  PubMed  Google Scholar 

  134. Taylor A. Role of nutrients in delaying cataracts. Ann N Y Acad Sci. 1992;669:111–23; discussion 123–114.

    CAS  PubMed  Google Scholar 

  135. Weber P, Bendich A, Machlin LJ. Vitamin E and human health: rationale for determining recommended intake levels. Nutrition. 1997;13(5):450–60.

    CAS  PubMed  Google Scholar 

  136. Libondi T, Menzione M, Auricchio G. In vitro effect of alpha-tocopherol on lysophosphatidylcholine-induced lens damage. Exp Eye Res. 1985;40(5):661–6.

    CAS  PubMed  Google Scholar 

  137. Varma SD, Beachy NA, Richards RD. Photoperoxidation of lens lipids: prevention by vitamin E. Photochem Photobiol. 1982;36(6):623–6.

    CAS  PubMed  Google Scholar 

  138. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    CAS  PubMed  Google Scholar 

  139. Epp O, Ladenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983;133(1):51–69.

    CAS  PubMed  Google Scholar 

  140. Ho YS, Xiong Y, Ma W, Spector A, Ho DS. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem. 2004;279(31):32804–12. doi:10.1074/jbc.M404800200.

    CAS  PubMed  Google Scholar 

  141. Spector A, Kuszak JR, Ma W, Wang RR, Ho Y, Yang Y. The effect of photochemical stress upon the lenses of normal and glutathione peroxidase-1 knockout mice. Exp Eye Res. 1998;67(4):457–71.

    CAS  PubMed  Google Scholar 

  142. Behndig A, Karlsson K, Reaume AG, Sentman ML, Marklund SL. In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase. Free Radic Biol Med. 2001;31(6):738–44.

    CAS  PubMed  Google Scholar 

  143. Buckingham RH. The behaviour of reduced proteins from normal and cataractous lenses in highly dissociating media: cross-linked protein in cataractous lenses. Exp Eye Res. 1972;14(2):123–9.

    CAS  PubMed  Google Scholar 

  144. Truscott RJ, Augusteyn RC. The state of sulphydryl groups in normal and cataractous human lenses. Exp Eye Res. 1977;25(2):139–48.

    CAS  PubMed  Google Scholar 

  145. Gladyshev VN, Liu A, Novoselov SV, Krysan K, Sun QA, Kryukov VM, Kryukov GV, Lou MF. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J Biol Chem. 2001;276(32):30374–80. doi:10.1074/jbc.M100020200.

    CAS  PubMed  Google Scholar 

  146. Lundberg M, Johansson C, Chandra J, Enoksson M, Jacobsson G, Ljung J, Johansson M, Holmgren A. Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem. 2001;276(28):26269–75. doi:10.1074/jbc.M011605200.

    CAS  PubMed  Google Scholar 

  147. Raghavachari N, Lou MF. Evidence for the presence of thioltransferase in the lens. Exp Eye Res. 1996;63(4):433–41. doi:10.1006/exer.1996.0133.

    CAS  PubMed  Google Scholar 

  148. Qiao F, Xing K, Liu A, Ehlers N, Raghavachari N, Lou MF. Human lens thioltransferase: cloning, purification, and function. Invest Ophthalmol Vis Sci. 2001;42(3):743–51.

    CAS  PubMed  Google Scholar 

  149. Fernandes AP, Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal. 2004;6(1):63–74. doi:10.1089/152308604771978354.

    CAS  PubMed  Google Scholar 

  150. Wu F, Wang GM, Raghavachari N, Lou MF. Distribution of thioltransferase (glutaredoxin) in ocular tissues. Invest Ophthalmol Vis Sci. 1998;39(3):476–80.

    CAS  PubMed  Google Scholar 

  151. Lou MF. Thiol regulation in the lens. J Ocul Pharmacol Ther. 2000;16(2):137–48.

    CAS  PubMed  Google Scholar 

  152. Wells WW, Xu DP. Dehydroascorbate reduction. J Bioenerg Biomembr. 1994;26(4):369–77.

    CAS  PubMed  Google Scholar 

  153. Sasaki H, Giblin FJ, Winkler BS, Chakrapani B, Leverenz V, Shu CC. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium. Invest Ophthalmol Vis Sci. 1995;36(9):1804–17.

    CAS  PubMed  Google Scholar 

  154. Xing K, Lou MF. The possible physiological function of thioltransferase in cells. FASEB J. 2003;17(14):2088–90. doi:10.1096/fj.02-1164fje.

    CAS  PubMed  Google Scholar 

  155. Fernando MR, Lechner JM, Lofgren S, Gladyshev VN, Lou MF. Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells. FASEB J. 2006;20(14):2645–7. doi:10.1096/fj.06-5919fje.

    CAS  PubMed  Google Scholar 

  156. Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S. Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur J Biochem. 1992;209(3):917–22.

    CAS  PubMed  Google Scholar 

  157. Yoshitake S, Nanri H, Fernando MR, Minakami S. Possible differences in the regenerative roles played by thioltransferase and thioredoxin for oxidatively damaged proteins. J Biochem. 1994;116(1):42–6.

    CAS  PubMed  Google Scholar 

  158. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989;264(24):13963–6.

    CAS  PubMed  Google Scholar 

  159. Yegorova S, Liu A, Lou MF. Human lens thioredoxin: molecular cloning and functional characterization. Invest Ophthalmol Vis Sci. 2003;44(8):3263–71.

    PubMed  Google Scholar 

  160. Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199–208.

    CAS  PubMed  Google Scholar 

  161. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9.

    CAS  PubMed  Google Scholar 

  162. Baker A, Payne CM, Briehl MM, Powis G. Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res. 1997;57(22):5162–7.

    CAS  PubMed  Google Scholar 

  163. Gasdaska JR, Berggren M, Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ. 1995;6(12):1643–50.

    CAS  PubMed  Google Scholar 

  164. Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J, Tursz T. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A. 1990;87(21):8282–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Nakamura H, Matsuda M, Furuke K, Kitaoka Y, Iwata S, Toda K, Inamoto T, Yamaoka Y, Ozawa K, Yodoi J. Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. Immunol Lett. 1994;42(1–2):75–80.

    CAS  PubMed  Google Scholar 

  166. Taniguchi Y, Taniguchi-Ueda Y, Mori K, Yodoi J. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res. 1996;24(14):2746. -2752.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39:67–101. doi:10.1146/annurev.pharmtox.39.1.67.

    CAS  PubMed  Google Scholar 

  168. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997;15:351–69. doi:10.1146/annurev.immunol.15.1.351.

    CAS  PubMed  Google Scholar 

  169. Schallreuter KU, Wood JM. The role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis. Biochem Biophys Res Commun. 1986;136(2):630–7.

    CAS  PubMed  Google Scholar 

  170. Arrigo AP. Gene expression and the thiol redox state. Free Radic Biol Med. 1999;27(9–10):936–44.

    CAS  PubMed  Google Scholar 

  171. Galter D, Mihm S, Droge W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem. 1994;221(2):639–48.

    CAS  PubMed  Google Scholar 

  172. Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci U S A. 1994;91(5):1672–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17(9):2596–606. doi:10.1093/emboj/17.9.2596.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol. 1999;300:219–26.

    CAS  PubMed  Google Scholar 

  175. Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract. 1999;45(2–3):101–12.

    CAS  PubMed  Google Scholar 

  176. Yegorova S, Yegorov O, Lou MF. Thioredoxin induced antioxidant gene expressions in human lens epithelial cells. Exp Eye Res. 2006;83(4):783–92. doi:10.1016/j.exer.2006.03.018.

    CAS  PubMed  Google Scholar 

  177. Bhuyan KC, Reddy PG, Bhuyan DK. Thioredoxin genes in lens: regulation by oxidative stress. Methods Enzymol. 2002;347:421–35.

    CAS  PubMed  Google Scholar 

  178. Reddy PG, Bhuyan DK, Bhuyan KC. Lens-specific regulation of the thioredoxin-1 gene, but not thioredoxin-2, upon in vivo photochemical oxidative stress in the Emory mouse. Biochem Biophys Res Commun. 1999;265(2):345–9. doi:10.1006/bbrc.1999.1691.

    CAS  PubMed  Google Scholar 

  179. Spector A, Scotto R, Weissbach H, Brot N. Lens methionine sulfoxide reductase. Biochem Biophys Res Commun. 1982;108(1):429–34.

    CAS  PubMed  Google Scholar 

  180. Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, St John G, Nathan C, Brot N. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys. 2002;397(2):172–8. doi:10.1006/abbi.2001.2664.

    CAS  PubMed  Google Scholar 

  181. Brot N, Weissbach L, Werth J, Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A. 1981;78(4):2155–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Vogt W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med. 1995;18(1):93–105.

    CAS  PubMed  Google Scholar 

  183. Kantorow M, Hawse JR, Cowell TL, Benhamed S, Pizarro GO, Reddy VN, Hejtmancik JF. Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc Natl Acad Sci U S A. 2004;101(26):9654–9. doi:10.1073/pnas.0403532101.

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Marchetti MA, Pizarro GO, Sagher D, Deamicis C, Brot N, Hejtmancik JF, Weissbach H, Kantorow M. Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells. Invest Ophthalmol Vis Sci. 2005;46(6):2107–12. doi:10.1167/iovs.05-0018.

    PubMed Central  PubMed  Google Scholar 

  185. Marchetti MA, Lee W, Cowell TL, Wells TM, Weissbach H, Kantorow M. Silencing of the methionine sulfoxide reductase A gene results in loss of mitochondrial membrane potential and increased ROS production in human lens cells. Exp Eye Res. 2006;83(5):1281–6. doi:10.1016/j.exer.2006.07.005.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Rosenfeld SI BM, Bobrow JC, et al. Lens and cataracts In: Basic and clinical science course. American Academy of Ophthalmology, San Francisco; 2007g. p. 89–160

    Google Scholar 

  187. Dick HB. Light-adjustable IOL: refractive adjustability provides greater predictability in post-refractive surgery eyes. EUROTIMES, vol 17. European Society of Cataract and Refractive Surgery. 2012.

    Google Scholar 

  188. Rosenfeld SI BM, Bobrow JC, et al. Lens and cataracts In: Basic and clinical science course. American Academy of Ophthalmology, San Francisco; 2007f. p. 163–194

    Google Scholar 

  189. Zhang S, Chai FY, Yan H, Guo Y, Harding JJ. Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats. Mol Vis. 2008;14:862–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Grinberg L, Fibach E, Amer J, Atlas D. N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med. 2005;38(1):136–45. doi:10.1016/j.freeradbiomed.2004.09.025.

    CAS  PubMed  Google Scholar 

  191. Cotgreave IA. N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol. 1997;38:205–27.

    CAS  PubMed  Google Scholar 

  192. Ates B, Abraham L, Ercal N. Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radic Res. 2008;42(4):372–7. doi:10.1080/10715760801998638.

    CAS  PubMed  Google Scholar 

  193. Carey JW, Pinarci EY, Penugonda S, Karacal H, Ercal N. In vivo inhibition of l-buthionine-(S, R)-sulfoximine-induced cataracts by a novel antioxidant, N-acetylcysteine amide. Free Radic Biol Med. 2011;50(6):722–9. doi:10.1016/j.freeradbiomed.2010.12.017.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuran Ercal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tobwala, S., Karacal, H., Ercal, N. (2015). Antioxidant Defense Network in the Lens and Benefits of Glutathione Prodrugs in Cataracts. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_18

Download citation

Publish with us

Policies and ethics