Skip to main content

p53 Regulates Developmental Apoptosis and Gene Expression to Modulate Lens Differentiation

  • Chapter
  • First Online:
  • 1197 Accesses

Abstract

The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle progress and cell differentiation. It mainly acts as a transcription factor. In addition, it can also directly interact with apoptosis regulators in mitochondria to control apoptosis. Recent studies from our laboratory and others have shown that p53 plays an active role in regulating lens differentiation. It does so by modulating developmental apoptosis and also controlling expression of lens differentiation-specific genes. In this chapter, we summary the current progresses in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spemann H. Über Correlationen in der Entwicklung des Auges. Verhand Anat Ges. 1901;15:61–79.

    Google Scholar 

  2. Lovicu FJ, McAvoy JW. Growth factor regulation of lens development. Dev Biol. 2005;280(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  3. Donner AL, Lachke SA, Maas RL. Lens induction in vertebrates: variations on a conserved theme of signaling events. Semin Cell Dev Biol. 2006;17:676–85.

    Article  CAS  PubMed  Google Scholar 

  4. Ogino H, Ochi H, Reza HM, Yasuda K. Transcription factors involved in lens development from the preplacodal ectoderm. Dev Biol. 2012;363(2):333–47.

    Article  CAS  PubMed  Google Scholar 

  5. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA. 1979;76:2420–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278:261–3.

    Article  CAS  PubMed  Google Scholar 

  7. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  8. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.

    Article  CAS  PubMed  Google Scholar 

  9. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014;15(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  10. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25(3):304–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14(4):197–210.

    Article  CAS  Google Scholar 

  12. Kilpivaara O, Aaltonen LA. Diagnostic cancer genome sequencing and the contribution of germline variants. Science. 2013;339(6127):1559–62.

    Article  CAS  PubMed  Google Scholar 

  13. Purvis JE, Lahav G. Encoding and decoding cellular information through signaling dynamics. Cell. 2013;152(5):945–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13(2):83–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Muller PA, Vousden KH. p53 Mutations in cancer. Nat Cell Biol. 2013;15(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  16. Sperka T, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol. 2012;13(9):579–90.

    Article  CAS  PubMed  Google Scholar 

  17. Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer. 2012;12(9):613–26.

    Article  CAS  PubMed  Google Scholar 

  18. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26(12):1268–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sahin E, DePinho RA. Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol. 2012;13(6):397–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Shen Y, White E. P53-dependent apoptosis pathways. Adv Cancer Res. 2005;82:55–84.

    Article  Google Scholar 

  21. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2(8):594–604.

    Article  CAS  PubMed  Google Scholar 

  22. Oren M. Decision making by p53: life, death and cancer. Cell Death Differ. 2003;10(4):431–42.

    Article  CAS  PubMed  Google Scholar 

  23. Manfredi JJ. p53 and apoptosis: it’s not just in the nucleus anymore. Mol Cell. 2003;11(3):552–4.

    Article  CAS  PubMed  Google Scholar 

  24. Haffner R, Oren M. Biochemical properties and biological effects of p53. Curr Opin Genet Dev. 1995;5:84–90.

    Article  CAS  PubMed  Google Scholar 

  25. Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 1994;369:574–8.

    Article  CAS  PubMed  Google Scholar 

  26. Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ. p53-Independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science. 1995;267:1024–7.

    Article  CAS  PubMed  Google Scholar 

  27. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science. 1995;267(5200):1018–21.

    Article  CAS  PubMed  Google Scholar 

  28. Shaulsky G, Goldfinger N, Peled A, Rotter V. Involvement of wild-type p53 in pre-B-cell differentiation in vitro. Proc Natl Acad Sci USA. 1991;88(20):8982–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Quang CT, Wessely O, Pironin M, Beug H, Ghysdael J. Cooperation of Spi-1/PU.1 with an activated erythropoietin receptor inhibits apoptosis and Epo-dependent differentiation in primary erythroblasts and induces their Kit ligand-dependent proliferation. EMBO J. 1997;16(18):5639–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Metz T, Harris AW, Adams JM. Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell. 1995;82(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  31. Weiss MJ, Orkin SH. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA. 1995;92(21):9623–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. McAvoy JW. Induction of the eye lens. Differentiation. 1980;17:137–49.

    Article  CAS  PubMed  Google Scholar 

  33. Bloemendal H. Molecular and cellular biology of the eye lens. New York: Wiley; 1981.

    Google Scholar 

  34. Piatigorsky J. Lens differentiation in vertebrates: a review of cellular and molecular features. Differentiation. 1981;19:134–53.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Yan Q, Liu JP, Zou LJ, Liu J, Sun S, Deng M, Gong L, Ji WK, Li DW. Apoptosis: its functions and control in the ocular lens. Curr Mol Med. 2010;10(9):864–75.

    Article  CAS  PubMed  Google Scholar 

  36. Cvekl A, Duncan MA. Genetic and epigenetic mechanisms of gene regulation during lens development. Progress Retinal Eye Res. 2007;26:555–97.

    Article  CAS  Google Scholar 

  37. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    Article  CAS  PubMed  Google Scholar 

  38. Ikeda S, Hawes NL, Chang B, Avery CS, Smith RS, Nishina PM. Severe ocular abnormalities in C57BL/6 but not in 129/Sv p53-deficient mice. Invest Ophthalmol Vis Sci. 1999;40:1874–8.

    CAS  PubMed  Google Scholar 

  39. Reichel MB, Ali RR, D’Esposito F, Clarke AR, Luther PJ, Bhattacharya SS, Hunt DM. High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death Differ. 1998;5:156–62.

    Article  CAS  PubMed  Google Scholar 

  40. Deng M, Chen P, Liu F, Fu S, Tang H, Fu Y, Xiong Z, Hui S, Ji W, Zhang X, Zhang L, Gong L, Hu X, Hu W, Sun S, Liu J, Xiao L, Liu WB, Xiao YM, Liu SJ, Liu Y, Li DWC. The p53-Bak apoptotic signaling axis plays an essential role in regulating differentiation of the ocular lens. Curr Mol Med. 2012;12:901–16.

    Article  CAS  PubMed  Google Scholar 

  41. Pokroy R, Tendler Y, Pollack A, Zinder O, Weisinger G. p53 Expression in the normal murine eye. Invest Ophthalmol Vis Sci. 2002;43:1736–41.

    PubMed  Google Scholar 

  42. Ayala M, Strid H, Jacobsson U, Söderberg PG. p53 Expression and apoptosis in the lens after ultraviolet radiation exposure. Invest Ophthalmol Vis Sci. 2007;48:4187–91.

    Article  PubMed  Google Scholar 

  43. Geatrell JC, Gan PM, Mansergh FC. Apoptosis gene profiling reveals spatio-temporal regulated expression of the p53/Mdm2 pathway during lens development. Exp Eye Res. 2009;88:1137–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Rabl C. Uber den Bau und die Entwicklung der lines. III. Die lines der Saugethiere: Ruckblick und Schluss. Z Wiss Zool. 1900;67:1–138.

    Google Scholar 

  45. Glucksmann A. Cell death in normal vertebrate ontogeny. Biol Rev. 1951;26:59–86.

    Article  CAS  PubMed  Google Scholar 

  46. Silver J, Hughes AFW. The role of cell death during morphogenesis of the mammalian eye. J Morphol. 1973;140:159–70.

    Article  CAS  PubMed  Google Scholar 

  47. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493–501.

    Article  CAS  PubMed  Google Scholar 

  49. Ishizaki Y, Voyvodic JT, Burne JF, Raff MC. Control of lens epithelial cell survival. J Cell Biol. 1993;121(4):899–908.

    Article  CAS  PubMed  Google Scholar 

  50. Morgenbesser SD, Williams BO, Jacks T, DePinho RA. p53-Dependent apoptosis by Rb-deficiency in the developing mouse lens. Nature. 1994;371:72–4.

    Article  CAS  PubMed  Google Scholar 

  51. Pan H, Griep AE. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 1994;8:1285–99.

    Article  CAS  PubMed  Google Scholar 

  52. Pan H, Griep AE. Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 1995;9:2157–69.

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura T, Pichel JG, Williams-Simons L, Westphal H. An apoptotic defect in lens differentiation caused by human p53 is rescued by a mutant allele. Proc Natl Acad Sci USA. 1995;92(13):6142–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nakajima Y, NakamuraT ET, Murata Y. Loss of one allele of the p53 gene in the lens epithelial tumor in transgenic mice suppresses apoptosis induced by a topoisomerase I inhibitor (CPT-11). Cancer Lett. 2002;179(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  55. Caelles C, Helmberg A, Karin M. p53-Dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994;370:220–3.

    Article  CAS  PubMed  Google Scholar 

  56. Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 1994;8:2817–30.

    Article  CAS  PubMed  Google Scholar 

  57. Hettmann T, Barton K, Leiden JM. Microphthalmia due to p53-mediated apoptosis of anterior lens epithelial cells in mice lacking the CREB-2 transcription factor. Dev Biol. 2000;222:110–23.

    Article  CAS  PubMed  Google Scholar 

  58. Wang WL, Li Q, Xu J, Cvekl A. Lens fiber cell differentiation and denucleation are disrupted nuclear receptor box of NCOA6 and result in p53-dependent. Mol Biol Cell. 2010;21(14):2453–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wiley LA, Rajagopal R, Dattilo LK, Beebe DC. The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens. Dis Model Mech. 2011;4:484–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Miyashita T, Krajewski S, et al. Tumor suppressor p53 is a regulator of bcl-2 and baxgene expression in vitro and in vivo. Oncogene. 1994;9:1799–805.

    CAS  PubMed  Google Scholar 

  61. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–9.

    Article  CAS  PubMed  Google Scholar 

  62. Wu GS, Burns TF, et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet. 1997;17:141–3.

    Article  CAS  PubMed  Google Scholar 

  63. Wen-Schaub LB, Zhang W, et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol. 1995;15:3032–40.

    Google Scholar 

  64. Buckbinder L, Talbott R, et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 1995;377:646–9.

    Article  CAS  PubMed  Google Scholar 

  65. Israeli D, Tessler E, et al. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 1997;16(14):4384–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389:300–5.

    Article  CAS  PubMed  Google Scholar 

  67. El-Deiry WS. Regulation of p53 downstream genes. Seminar Cancer Biol. 1998;8:345–57.

    Article  CAS  Google Scholar 

  68. Brown L, Boswell S, Raj L, Lee SW. Transcriptional targets of p53 that regulate cellular proliferation. Crit Rev Eukaryot Gene Expr. 2007;17(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  69. Weisz L, Oren M, Rotter V. Transcription regulation by mutant p53. Oncogene. 2007;26(15):2202–11.

    Article  CAS  PubMed  Google Scholar 

  70. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9:402–12.

    Article  CAS  PubMed  Google Scholar 

  71. Mihara M, Erster S, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.

    Article  CAS  PubMed  Google Scholar 

  72. Li WC, Kuszak JR, Dunn K, Wang RR, Ma W, Wang GM, Spector A, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J Cell Biol. 1995;130:169–81.

    Article  CAS  PubMed  Google Scholar 

  73. Li W-C, Kuszak JR, Wang G-M, Wu Z-Q, Spector A. Calcimycin-induced lens epithelial cell apoptosis contributes to cataract formation. Exp Eye Res. 1995;61:89–96.

    Google Scholar 

  74. Li W-C, Spector A. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract. Free Radic Biol Med. 1996;20:301–11.

    Article  CAS  PubMed  Google Scholar 

  75. Yan Q, Liu J-P, Li DW-C. Apoptosis in the ocular lens: role in development and pathogenesis. Differentiation. 2006;74:195–211.

    Article  CAS  PubMed  Google Scholar 

  76. Chen P, Ji W-K, Liu F-y, Tang H-J, Shujun F, Zhang X, Liu M, Gong L, Deng M, Wen-Feng H, Xiao-Hui H, Chen X-W, Li Z-l, Li X, Liu J-P, Li DW-C. Alpha-Crystallin and Carcinogenesis. Curr Mol Med. 2012;12(9):1164–73.

    Article  CAS  PubMed  Google Scholar 

  77. Li DW, Fass U, Huizar I, Spector A. Okaidac acid-induced lens epithelial cell apoptosis requires inhibition of phosphatase-1 and is associated with induction of gene expression including p53 and bax. Eur J Biochem. 1998;257:351–61.

    Article  CAS  PubMed  Google Scholar 

  78. Li DW-C, Xiang H, Mao Y-W, Wang J, Fass U, Zhang X-Y, Xu C. Caspase-3 is actively involved in okadaic acid-induced lens epithelial cell apoptosis. Exp Cell Res. 2001;266:279–91.

    Article  CAS  PubMed  Google Scholar 

  79. Li DW-C, Liu J-P, Mao YW, et al. Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alphaB-crystallin through inhibition of RAS activation. Mol Biol Cell. 2005;16:4437–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Mao Y-W, Liu J, Xiang H, Li DW-C. Human αA and αB-crystallins bind to Bax and Bcl-XS to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ. 2004;11:512–26.

    Article  CAS  PubMed  Google Scholar 

  81. Hu WF, Gong L, Cao Z, Ma H, Ji W, Deng M, Liu M, Hu XH, Chen P, Yan Q, Chen HG, Liu J, Sun S, Zhang L, Liu JP, Wawrousek E, Li DW. αA- and αB-crystallins interact with caspase-3 and Bax to guard mouse lens development. Curr Mol Med. 2012;12(2):177–87.

    Article  CAS  PubMed  Google Scholar 

  82. Moorozov V, Wawrousek EF. Caspase-dependent secondary lens fiber cell disintegration in αA/αB-crystallin double knockout mice. Development. 2006;133:813–21.

    Article  Google Scholar 

  83. Qin J, Chen HG, Yan Q, Deng M, Liu J, Doerge S, Ma W, Dong Z, Li DW. Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway. Cancer Res. 2008;68:4150–62.

    Article  CAS  PubMed  Google Scholar 

  84. Wride MA, Parker E, Sanders EJ. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation. Dev Biol. 1999;213(1):142–56.

    Article  CAS  PubMed  Google Scholar 

  85. Fromm L, Overbeek PA. Inhibition of cell death by lens-specific overexpression of bcl-2 in transgenic mice. Dev Genet. 1997;20(3):276–87.

    Article  CAS  PubMed  Google Scholar 

  86. Lane D, Levine A. p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol. 2010;2(12):a000893.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Liu FY, Tang XC, Deng M, Chen P, Ji W, Zhang X, Gong L, Woodward Z, Liu J, Zhang L, Sun S, Liu JP, Wu K, Wu MX, Liu XL, Yu MB, Liu Y, Li DWC. The tumor suppressor p53regulates c-Maf and Prox-1 to control lens differentiation. Curr Mol Med. 2012;12:917–28.

    Article  PubMed  Google Scholar 

  88. Xie Q, Cvekl A. The orchestration of mammalian tissue morphogenesis through a series of coherent feed-forward loops. J Biol Chem. 2011;286(50):43259–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Kawauchi S, Takahashi S, Nakajima O, et al. Regulation of lens fiber cell differentiation by transcription factor c-Maf. J Biol Chem. 1999;274(27):19254–60.

    Article  CAS  PubMed  Google Scholar 

  90. Czerny T, Busslinger M. DNA-binding and transactivation properties of Pax-6: three amino acids in the paired domain are responsible for the different sequence recognition of Pax-6 and BSAP (Pax-5). Mol Cell Biol. 1995;15:2858–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Ring BZ, Cordes SP, Overbeek PA, Barsh GS. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development. 2000;127:307–17.

    CAS  PubMed  Google Scholar 

  92. Tomarev SI, Zinovieva RD, Chang B, Hawes NL. Characterization of the mouse Prox1 gene. Biochem Biophys Res Commun. 1998;248(3):684–9.

    Article  CAS  PubMed  Google Scholar 

  93. Wigle JT, Chowdhury K, Gruss P, Oliver G. Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet. 1999;21(3):318–22.

    Article  CAS  PubMed  Google Scholar 

  94. Wilting J, Papoutsi M, Christ B, et al. The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues. FASEB J. 2002;16(10):1271–3.

    CAS  PubMed  Google Scholar 

  95. Mishima K, Watabe T, Saito A, et al. Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades. Mol Biol Cell. 2007;18(4):1421–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Westmoreland JJ, Kilic G, Sartain C, et al. Pancreas-specific deletion of Prox1 affects development and disrupts homeostasis of the exocrine pancreas. Gastroenterology. 2012;142(4):999–1009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Ji WK, Tang XC, Yi M, Chen PQ, Liu FY, Hu XH, Hu WF, Fu SJ, Liu JF, Wu KL, Wu MX, Liu XL, Luo LX, Huang S, Liu ZZ, Yu MB, Liu YZ, Li DW-C. p53 directly regulates αA- and βA3/A1-crystallin genes to modulate lens differentiation. Curr Mol Med. 2013;13(6):968–78.

    Article  CAS  PubMed  Google Scholar 

  98. Hu X-H, Nie Q, Yi M, Li T-T, Wang Z, Huang Z-X, Gong X-D, Zhou L, Ji W, Hu W, Liu J, Wang L, Zhu J, Liu W-B, Nguyen QD, Li DW-C. The p53 regulates gammaA-Crystallin gene during mouse lens development. Curr Mol Med. 2014;14(9):1197–1204.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health grants, the National Natural Science Foundation of China (81272228), the collaborative grant from Zhongshan Ophthalmic Center (8282012-XCT, FYL, ZWL, YZL, and DWL), the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486) and the Chinese Scholarship Council (WKJ, XHH, WFH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wan-Cheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tang, XC. et al. (2015). p53 Regulates Developmental Apoptosis and Gene Expression to Modulate Lens Differentiation. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_15

Download citation

Publish with us

Policies and ethics