Skip to main content

Glutamine Addiction of Cancer Cells

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

Cancer cells show an altered metabolism to fulfill their energy requirements. Along with the higher aerobic glycolytic flux, some tumors show a higher demand of glutamine with respect to normal cells. Indeed, glutamine sustains tumor proliferation rate being both a carbon and nitrogen donor for biosynthetic pathways. Glutamine also play other essential roles: mediates the uptake of non-essential aminoacids, preserves mitochondrial homeostasis and it is required for cell cycle progression. This glutamine addiction of cancer cells can be exploited to develop new anticancer therapies that target different steps of glutamine metabolism (e.g. uptake, catabolism). Many lines of evidence demonstrated that many cancer cell lines are sensitive to glutamine deprivation. In particular, glutamine deprivation has been observed to induce myc-dependent apoptosis in cell overexpressing the oncogene myc. Moreover, it has been recently demonstrated by our group that glutamine deprivation led to the upregulation of the monocarboxylate transporter 1 (MCT1), which is the main responsible for the uptake of 3-bromopyruvate (3-BrPA), an anti tumor agent under clinical development. MCT1 upregulation results in a higher sensitivity of cancer cells to 3-BrPA both in vivo and in vitro, providing a promising strategy for the treatment of glycolytic tumours.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–70.

    CAS  PubMed  Google Scholar 

  2. Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11(8):2785–808.

    Article  CAS  PubMed  Google Scholar 

  3. Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev. 2010;10(4):267–77.

    Article  CAS  Google Scholar 

  4. Jensen JA, Hunt TK, Scheuenstuhl H, Banda MJ. Effect of lactate, pyruvate, and pH on secretion of angiogenesis and mitogenesis factors by macrophages. Lab Investig. 1986;54(5):574–8.

    CAS  PubMed  Google Scholar 

  5. Eagle H. Nutrition needs of mammalian cells in tissue culture. Science. 1955;122(3168):501–14.

    Article  CAS  PubMed  Google Scholar 

  6. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4.

    Article  CAS  PubMed  Google Scholar 

  7. DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F. Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One. 2009;4(3):e4715.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Yuneva MO, Fan TW, Allen TD, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15(2):157–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal. 2010;3(119):ra31.

    Article  PubMed  Google Scholar 

  12. Erecinska M, Nelson D. Activation of glutamate dehydrogenase by leucine and its nonmetabolizable analogue in rat brain synaptosomes. J Neurochem. 1990;54(4):1335–43.

    Article  CAS  PubMed  Google Scholar 

  13. DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Duran RV, Oppliger W, Robitaille AM, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012;47(3):349–58.

    Article  CAS  PubMed  Google Scholar 

  15. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–62.

    Article  CAS  PubMed  Google Scholar 

  16. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev. 2007;7(12):961–7.

    Article  CAS  Google Scholar 

  18. Meister A. Metabolism and function of glutathione: an overview. Biochem Soc Trans. 1982;10(2):78–9.

    CAS  PubMed  Google Scholar 

  19. Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR. Under the ROS…thiol network is the principal suspect for autophagy commitment. Autophagy. 2010;6(7):999–1005.

    Article  CAS  PubMed  Google Scholar 

  20. Desideri E, Filomeni G, Ciriolo MR. Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy. 2012;8(12):1769–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lo M, Wang YZ, Gout PW. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol. 2008;215(3):593–602.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature. 2013;493(7434):689–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hertz L, Dienel GA. Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res. 2005;79(1–2):11–8.

    Article  CAS  PubMed  Google Scholar 

  24. Yeung SJ, Pan J, Lee MH. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell Mol Life Sci. 2008;65(24):3981–99.

    Article  CAS  PubMed  Google Scholar 

  25. Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15(4):254–66.

    Article  CAS  PubMed  Google Scholar 

  27. Witte D, Ali N, Carlson N, Younes M. Overexpression of the neutral amino acid transporter ASCT2 in human colorectal adenocarcinoma. Anticancer Res. 2002;22(5):2555–7.

    CAS  PubMed  Google Scholar 

  28. Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178(1):93–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yu D, Hung MC. Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene. 2000;19(53):6115–21.

    Article  CAS  PubMed  Google Scholar 

  31. Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582(14):2093–101.

    Article  CAS  PubMed  Google Scholar 

  32. Long J, Wang H, Lang Z, Wang T, Long M, Wang B. Expression level of glutamine synthetase is increased in hepatocellular carcinoma and liver tissue with cirrhosis and chronic hepatitis B. Hepatol Int. 2011;5(2):698–706.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Medina MA. Glutamine and cancer. J Nutrit. 2001;131(9 (suppl)):2539S–42. discussion 2550S-2531S.

    CAS  PubMed  Google Scholar 

  34. Osada T, Nagashima I, Tsuno NH, Kitayama J, Nagawa H. Prognostic significance of glutamine synthetase expression in unifocal advanced hepatocellular carcinoma. J Hepatol. 2000;33(2):247–53.

    Article  CAS  PubMed  Google Scholar 

  35. Dal Bello B, Rosa L, Campanini N, et al. Glutamine synthetase immunostaining correlates with pathologic features of hepatocellular carcinoma and better survival after radiofrequency thermal ablation. Clin Cancer Res. 2010;16(7):2157–66.

    Article  CAS  PubMed  Google Scholar 

  36. Ahluwalia GS, Grem JL, Hao Z, Cooney DA. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther. 1990;46(2):243–71.

    Article  CAS  PubMed  Google Scholar 

  37. Tisdale MJ. Pathogenesis of cancer cachexia. J Supportive Oncol. 2003;1(3):159–68.

    CAS  Google Scholar 

  38. Savarese DM, Savy G, Vahdat L, Wischmeyer PE, Corey B. Prevention of chemotherapy and radiation toxicity with glutamine. Cancer Treat Rev. 2003;29(6):501–13.

    Article  CAS  PubMed  Google Scholar 

  39. Hassanein M, Hoeksema MD, Shiota M, et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res. 2013;19(3):560–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Cory JG, Cory AH. Critical roles of glutamine as nitrogen donors in purine and pyrimidine nucleotide synthesis: asparaginase treatment in childhood acute lymphoblastic leukemia. In Vivo. 2006;20(5):587–9.

    CAS  PubMed  Google Scholar 

  41. Chang SM, Kuhn JG, Robins HI, et al. Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J Clin Oncol. 1999;17(3):984–90.

    CAS  PubMed  Google Scholar 

  42. Wang JB, Erickson JW, Fuji R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18(3):207–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Seltzer MJ, Bennett BD, Joshi AD, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70(22):8981–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Narta UK, Kanwar SS, Azmi W. Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Crit Rev Oncol. 2007;61(3):208–21.

    Article  Google Scholar 

  45. Lessner HE, Valenstein S, Kaplan R, DeSimone P, Yunis A. Phase II study of L-asparaginase in the treatment of pancreatic carcinoma. Cancer Treat Rep. 1980;64(12):1359–61.

    CAS  PubMed  Google Scholar 

  46. Darmaun D, Welch S, Rini A, Sager BK, Altomare A, Haymond MW. Phenylbutyrate-induced glutamine depletion in humans: effect on leucine metabolism. Am J Physiol. 1998;274(5 Pt 1):E801–7.

    CAS  PubMed  Google Scholar 

  47. Franco OE, Onishi T, Umeda Y, et al. Phenylacetate inhibits growth and modulates cell cycle gene expression in renal cancer cell lines. Anticancer Res. 2003;23(2B):1637–42.

    CAS  PubMed  Google Scholar 

  48. Cardaci S, Rizza S, Filomeni G, et al. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1. Cancer Res. 2012;72(17):4526–36.

    Article  CAS  PubMed  Google Scholar 

  49. Cardaci S, Ciriolo MR. Deprive to kill: glutamine closes the gate to anticancer monocarboxylic drugs. Autophagy. 2012;8(12):1830–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Cardaci S, Desideri E, Ciriolo MR. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J Bioenerg Biomembr. 2012;44(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  51. Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL. A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr. 2012;44(1):163–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by grants from AIRC (# IG 10636) and from Ministero dell’Università e della Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Ciriolo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Desideri, E., Ciriolo, M.R. (2015). Glutamine Addiction of Cancer Cells. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics