Skip to main content

Glutamine and Skeletal Muscle

  • Chapter
  • First Online:
Book cover Glutamine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

Of the group of 20 amino acids which covalently bonded in linear sequences to form all proteins from the oldest bacteria to the most complex forms of life, glutamine deserves special attention. For many mammals, including human beings, glutamine, especially intermediate metabolism of amino acids of muscle cells, is the most abundant free amino acid in the body and is important in many cell types, playing an important role in a number of essential functions. In high catabolism conditions, such as diseases and exhausting exercise, the synthesis of glutamine does not supply the needs demanded by the organism. In this process, one of the most important sites of glutamine synthesis is the skeletal muscle, not for its synthesis capacity per se, but because it represents at least 40 % of total bodily mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC. Glutamine-dependent changes in gene expression and protein activity. Cell Biochem Funct. 2005;23:77–84.

    Article  CAS  PubMed  Google Scholar 

  2. Newsholme P, Procopio J, Lima MMR, Pithon-Curi TC, Curi R. Glutamine and glutamate – their central role in cell metabolism and function. Cell Biochem Funct. 2003;21:1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Neu J, Shenoy V, Chakrabarti R. Glutamine nutrition and metabolism: where do we go from here? FASEB J. 1996;10:829–37.

    CAS  PubMed  Google Scholar 

  4. Labow BI, Souba WW, Abcouwer SF. Mechanisms governing the expression of the enzymes of glutamine metabolism–glutaminase and glutamine synthetase. J Nutr. 2001;131 Suppl 9:2467S–74.

    CAS  PubMed  Google Scholar 

  5. Rogero MM, Borelli P, Vinolo MA, Fock RA, Pires ISD, Tirapegui J. Dietary glutamine supplementation affects macrophage function, hematopoiesis and nutritional status in early weaned mice. Clin Nutr. 2008;27:386–97.

    Article  CAS  PubMed  Google Scholar 

  6. Flaring UB, Rooyackers OE, Wernerman J, Hammarqvist F. Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin Sci. 2003;104:275–82.

    Article  CAS  PubMed  Google Scholar 

  7. Cruzat VF, Tirapegui J. Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Nutrition. 2009;25:428–35.

    Article  CAS  PubMed  Google Scholar 

  8. Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134:1583S–7.

    CAS  PubMed  Google Scholar 

  9. Newsholme P, Lima MMR, Porcopio J, et al. Glutamine and glutamate as vital metabolites. Braz J Med Biol Res. 2003;36:153–63.

    Article  CAS  PubMed  Google Scholar 

  10. Walsh NP, Blannin AK, Clark AM, Cook L, Robson PJ, Gleeson M. The effects of high-intensity intermittent exercise on the plasma concentrations of glutamine and organic acids. Eur J Appl Physiol Occup Physiol. 1998;77:434–8.

    Article  CAS  PubMed  Google Scholar 

  11. Rowbottom DG, Keast D, Morton AR. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med. 1996;21:80–97.

    Article  CAS  PubMed  Google Scholar 

  12. Manso Filho HC, McKeever KH, Gordon ME, et al. Developmental changes in the concentrations of glutamine and other amino acids in plasma and skeletal muscle of the standard bred foal. J Anim Sci. 2009;87:2528–35.

    Article  CAS  PubMed  Google Scholar 

  13. Graham TE, MacLean DA. Ammonia and amino acid metabolism in skeletal muscle: human, rodent and canine models. Med Sci Sports Exerc. 1998;30:34–46.

    Article  CAS  PubMed  Google Scholar 

  14. Curi R, Newsholme P, Procopio J, Lagranha C, Gorjao R, Pithon-Curi TC. Glutamine, gene expression, and cell function. Front Biosci. 2007;12:344–57.

    Article  CAS  PubMed  Google Scholar 

  15. Usher-Smith JA, Huang CLH, Fraser JA. Control of cell volume in skeletal muscle. Biol Rev. 2009;84:143–59.

    Article  PubMed  Google Scholar 

  16. Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107:57–64.

    Article  CAS  PubMed  Google Scholar 

  17. Whillier S, Garcia B, Chapman BE, Kuchel PW, Raftos JE. Glutamine and alpha-ketoglutarate as glutamate sources for glutathione synthesis in human erythrocytes. FEBS J. 2011;278:3152–63.

    Article  CAS  PubMed  Google Scholar 

  18. Dam A, Mitchell A, Rush JE, Quadrilatero J. Elevated skeletal muscle apoptotic signaling following glutathione depletion. Apoptosis. 2012;17:48–60.

    Article  CAS  PubMed  Google Scholar 

  19. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  20. Cruzat VF, Rogero MM, Ou AK, Pires ISO, Tirapegui J. Effect of alanyl-glutamine supplementation on muscle damage in rats submitted to exhaustive exercise. Ann Nutr Metab. 2007;51:386–7.

    Google Scholar 

  21. Lamb GD, Westerblad H. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J Physiol. 2011;589:2119–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Powers SK, Talbert EE, Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol. 2011;589(Pt 9):2129–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kim M, Wischmeyer PE. Glutamine. World Rev Nutr Diet. 2013;105:90–6.

    Article  PubMed  Google Scholar 

  24. Heck TG, Scholer CM, de Bittencourt PI. HSP70 expression: does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem Funct. 2011;29:215–26.

    Article  CAS  PubMed  Google Scholar 

  25. Xue H, Slavov D, Wischmeyer PE. Glutamine-mediated dual regulation of heat shock transcription factor-1 activation and expression. J Biol Chem. 2012;287:40400–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Singleton KD, Wischmeyer PE. Glutamine’s protection against sepsis and lung injury is dependent on heat shock protein 70 expression. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1839–45.

    Article  CAS  PubMed  Google Scholar 

  27. Meador BM, Huey KA. Glutamine preserves skeletal muscle force during an inflammatory insult. Muscle Nerve. 2009;40:1000–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lightfoot A, McArdle A, Griffiths RD. Muscle in defense. Crit Care Med. 2009;37:S384–90.

    Article  CAS  PubMed  Google Scholar 

  29. Rogero MM, Borges MC, Fock RA, et al. Glutamine in vitro supplementation decreases glucose utilization by the glycolytic pathway in Lps-activated peritoneal macrophages. Ann Nutr Metab. 2009;55:455.

    Google Scholar 

  30. Nässl A-M, Rubio-Aliaga I, Fenselau H, Marth MK, Kottra G, Daniel H. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol. 2011;301:G128–37.

    Article  PubMed  Google Scholar 

  31. Ingersoll SA, Ayyadurai S, Charania MA, Laroui H, Yan Y, Merlin D. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2012;302:G484–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rogero MM, Tirapegui J, Pedrosa RG, de Castro IA, Pires ISD. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise. Nutrition. 2006;22:564–71.

    Article  CAS  PubMed  Google Scholar 

  33. Cruzat VF, Rogero MM, Tirapegui J. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise. Cell Biochem Funct. 2010;28:24–30.

    Article  CAS  PubMed  Google Scholar 

  34. Ziegler TR, Young LS, Benfell K, et al. Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann Intern Med. 1992;116:821–8.

    Article  CAS  PubMed  Google Scholar 

  35. Grau T, Bonet A, Minambres E, et al. The effect of l-alanyl-l-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit Care Med. 2011;39:1263–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wernerman J. Clinical use of glutamine supplementation. J Nutr. 2008;138:2040S–4.

    CAS  PubMed  Google Scholar 

  37. Krause MS, de Bittencourt PIHJ. Type 1 diabetes: can exercise impair the autoimmune event? The l-arginine/glutamine coupling hypothesis. Cell Biochem Funct. 2008;26:406–33.

    Article  CAS  Google Scholar 

  38. Newsholme P, Krause M, Newsholme EA, Stear SJ, Burke LM, Castell LM. A-Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance Part 18. Br J Sports Med. 2011;45:230–2.

    Article  CAS  PubMed  Google Scholar 

  39. Newsholme P. Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr. 2001;131(9 Suppl):2515S–22.

    CAS  PubMed  Google Scholar 

  40. Newsholme P, Abdulkader F, Rebelato E, et al. Amino acids and diabetes: implications for endocrine, metabolic and immune function. Front Biosci. 2011;16:315–39.

    Article  CAS  Google Scholar 

  41. Menge BA, Schrader H, Ritter PR, et al. Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regul Pept. 2010;160(1–3):75–80.

    Article  CAS  PubMed  Google Scholar 

  42. Krause M, Rodrigues-Krause J, O'Hagan C, et al. Differential nitric oxide levels in the blood and skeletal muscle of type 2 diabetic subjects may be consequence of adiposity: a preliminary study. Metabolism. 2012;61:1528–37.

    Article  CAS  PubMed  Google Scholar 

  43. Rodrigues-Krause J, Krause M, O’Hagan C, et al. Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones. 2012;17:293–302.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Rogero MM, Tirapegui J, Pedrosa RG, Pires ISD, de Castro IA. Plasma and tissue glutamine response to acute and chronic supplementation with l-glutamine and l-alanyl-l-glutamine in rats. Nutr Res. 2004;24:261–70.

    Article  Google Scholar 

  45. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans. 2007;35(Pt 5):1180–6.

    CAS  PubMed  Google Scholar 

  46. Newsholme P, Brennan L, Rubi B, Maechler P. New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci. 2005;108:185–94.

    Article  CAS  PubMed  Google Scholar 

  47. Cunningham GA, McClenaghan NH, Flatt PR, Newsholme P. l-Alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis. Clin Sci. 2005;109:447–55.

    Article  CAS  PubMed  Google Scholar 

  48. Harris RC, Hoffman JR, Allsopp A, Routledge NB. l-glutamine absorption is enhanced after ingestion of l-alanylglutamine compared with the free amino acid or wheat protein. Nutr Res. 2012;32:272–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Tirapegui Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tirapegui, J., Cruzat, V.F. (2015). Glutamine and Skeletal Muscle. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_38

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics