Skip to main content

Amino Acid Transporters and Glutamine

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1727 Accesses

Abstract

Glutamine transporters play important roles in metabolism and amino acid homeostasis of cells in most tissues [1]. While glutamine has been classified to be a nonessential amino acid, it has been shown that glutamine supply may become limiting for metabolism under conditions of stress and illness [2]. Furthermore, glutamine is a critical nutrient for rapidly proliferating cells, such as dividing cancer cells [3, 4]. On a cellular level, glutamine is imported into cells, or exported from cells, by plasma membrane glutamine transporters (see [1] for a review). Many glutamine transporters have been characterized traditionally by their specificity profile for substrates and inhibitors, their cation dependence, and mechanistic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bode BP. Recent molecular advances in mammalian glutamine transport. J Nutr. 2001;131:2475S–85.

    CAS  PubMed  Google Scholar 

  2. Neu J, Shenoy V, Chakrabarti R. Glutamine nutrition and metabolism: where do we go from here? FASEB J. 1996;10:829–37.

    CAS  PubMed  Google Scholar 

  3. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15:254–66.

    Article  CAS  PubMed  Google Scholar 

  4. McGivan JD, Bungard CI. The transport of glutamine into mammalian cells. Front Biosci. 2007;12:874–82.

    Article  CAS  PubMed  Google Scholar 

  5. Utsunomiya-Tate N, Endou H, Kanai Y. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem. 1996;271:14883–90.

    Article  CAS  PubMed  Google Scholar 

  6. Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447:784–95.

    Article  CAS  PubMed  Google Scholar 

  7. Sloan JL, Mager S. Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J Biol Chem. 1999;274:23740–5.

    Article  CAS  PubMed  Google Scholar 

  8. Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Oxender DL, Christensen HN. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem. 1963;238:3686–99.

    CAS  PubMed  Google Scholar 

  10. Christensen HN, Liang M, Archer EG. A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem. 1967;242:5237–46.

    CAS  PubMed  Google Scholar 

  11. Yernool D, Boudker O, Jin Y, Gouaux E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature. 2004;431:811–8.

    Article  CAS  PubMed  Google Scholar 

  12. Albers T, Marsiglia W, Thomas T, Gameiro A, Grewer C. Defining substrate and blocker activity of alanine serine cysteine transporter 2 (ASCT2) ligands with novel serine analogs. Mol Pharmacol. 2011;81:356–65.

    Article  PubMed  Google Scholar 

  13. Broer A, Brookes N, Ganapathy V, et al. The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem. 1999;73:2184–94.

    CAS  PubMed  Google Scholar 

  14. Grewer C, Grabsch E. New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak. J Physiol. 2004;557:747–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Esslinger CS, Cybulski KA, Rhoderick JF. Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg Med Chem. 2005;13:1111–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gliddon CM, Shao Z, LeMaistre JL, Anderson CM. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem. 2009;108:372–83.

    Article  CAS  PubMed  Google Scholar 

  17. Dolinska M, Zablocka B, Sonnewald U, Albrecht J. Glutamine uptake and expression of mRNA’s of glutamine transporting proteins in mouse cerebellar and cerebral cortical astrocytes and neurons. Neurochem Int. 2004;44:75–81.

    Article  CAS  PubMed  Google Scholar 

  18. Fuchs BC, Perez JC, Suetterlin JE, Chaudhry SB, Bode BP. Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells. Am J Physiol Gastrointest Liver Physiol. 2004;286:G467–78.

    Article  CAS  PubMed  Google Scholar 

  19. Broer A, Wagner C, Lang F, Broer S. Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J. 2000;346:705–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zerangue N, Kavanaugh MP. ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J Biol Chem. 1996;271:27991–4.

    Article  CAS  PubMed  Google Scholar 

  21. Zander CB, Albers T, Grewer C. Voltage-dependent processes in the electroneutral amino acid exchanger ASCT2. J Gen Physiol. 2013;141(6):659–72. doi:10.1085/jgp.201210948.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Palmada M, Speil A, Jeyaraj S, Bohmer C, Lang F. The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2. Biochem Biophys Res Commun. 2005;331:272–7.

    Article  CAS  PubMed  Google Scholar 

  23. Baird FE, Beattie KJ, Hyde AR, Ganapathy V, Rennie MJ, Taylor PM. Bidirectional substrate fluxes through the system N (SNAT5) glutamine transporter may determine net glutamine flux in rat liver. J Physiol. 2004;559:367–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chaudhry FA, Krizaj D, Larsson P, et al. Coupled and uncoupled proton movement by amino acid transport system N. EMBO J. 2001;20:7041–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hagglund MG, Sreedharan S, Nilsson VC, et al. Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem. 2011;286:20500–11.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Umapathy NS, Dun Y, Martin PM, et al. Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells. Invest Ophthalmol Vis Sci. 2008;49:5151–60.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Fei YJ, Sugawara M, Nakanishi T, et al. Primary structure, genomic organization, and functional and electrogenic characteristics of human system N 1, a Na+- and H+-coupled glutamine transporter. J Biol Chem. 2000;275:23707–17.

    Article  CAS  PubMed  Google Scholar 

  28. Broer S, Schneider HP, Broer A, Deitmer JW. Mutation of asparagine 76 in the center of glutamine transporter SNAT3 modulates substrate-induced conductances and Na+ binding. J Biol Chem. 2009;284:25823–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jack DL, Paulsen IT, Saier MH. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology. 2000;146(Pt 8):1797–814.

    CAS  PubMed  Google Scholar 

  30. Baird FE, Pinilla-Tenas JJ, Ogilvie WL, Ganapathy V, Hundal HS, Taylor PM. Evidence for allosteric regulation of pH-sensitive System A (SNAT2) and System N (SNAT5) amino acid transporter activity involving a conserved histidine residue. Biochem J. 2006;397:369–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nissen-Meyer LS, Popescu MC, el Hamdani H, Chaudhry FA. Protein kinase C-mediated phosphorylation of a single serine residue on the rat glial glutamine transporter SN1 governs its membrane trafficking. J Neurosci. 2011;31:6565–75.

    Article  CAS  PubMed  Google Scholar 

  32. Balkrishna S, Broer A, Kingsland A, Broer S. Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am J Physiol Cell Physiol. 2010;299:C1047–57.

    Article  CAS  PubMed  Google Scholar 

  33. Boehmer C, Okur F, Setiawan I, Broer S, Lang F. Properties and regulation of glutamine transporter SN1 by protein kinases SGK and PKB. Biochem Biophys Res Commun. 2003;306:156–62.

    Article  CAS  PubMed  Google Scholar 

  34. Gu S, Villegas CJ, Jiang JX. Differential regulation of amino acid transporter SNAT3 by insulin in hepatocytes. J Biol Chem. 2005;280:26055–62.

    Article  CAS  PubMed  Google Scholar 

  35. Sugawara M, Nakanishi T, Fei YJ, et al. Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim Biophys Acta. 2000;1509:7–13.

    Article  CAS  PubMed  Google Scholar 

  36. Varoqui H, Zhu H, Yao D, Ming H, Erickson JD. Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem. 2000;275:4049–54.

    Article  CAS  PubMed  Google Scholar 

  37. Boudker O, Verdon G. Structural perspectives on secondary active transporters. Trends Pharmacol Sci. 2010;31:418–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhang Z, Albers T, Fiumera HL, Gameiro A, Grewer C. A conserved Na(+) binding site of the sodium-coupled neutral amino acid transporter 2 (SNAT2). J Biol Chem. 2009;284:25314–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yao D, Mackenzie B, Ming H, et al. A novel system A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem. 2000;275:22790–7.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Papageorgiou G, Corrie JE, Grewer C. Pre-steady-state currents in neutral amino acid transporters induced by photolysis of a new caged alanine derivative. Biochemistry. 2007;46:3872–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mackenzie B, Schafer MK, Erickson JD, Hediger MA, Weihe E, Varoqui H. Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem. 2003;278:23720–30.

    Article  CAS  PubMed  Google Scholar 

  42. Hyde R, Cwiklinski EL, MacAulay K, Taylor PM, Hundal HS. Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem. 2007;282:19788–98.

    Article  CAS  PubMed  Google Scholar 

  43. Ling R, Bridges CC, Sugawara M, et al. Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim Biophys Acta. 2001;1512:15–21.

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez-Gonzalez IM, Cubelos B, Gimenez C, Zafra F. Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain. Neuroscience. 2005;130:61–73.

    Article  CAS  PubMed  Google Scholar 

  45. Gammelsaeter R, Jenstad M, Bredahl MK, Gundersen V, Chaudhry FA. Complementary expression of SN1 and SAT2 in the islets of Langerhans suggests concerted action of glutamine transport in the regulation of insulin secretion. Biochem Biophys Res Commun. 2009;381:378–82.

    Article  CAS  PubMed  Google Scholar 

  46. Desy F, Burelle Y, Belanger P, Gascon-Barre M, Lavoie JM. Effects of acute exercise on the gluconeogenic capacity of periportal and perivenous hepatocytes. J Appl Physiol. 2001;91:1099–104.

    CAS  PubMed  Google Scholar 

  47. Ruderisch N, Virgintino D, Makrides V, Verrey F. Differential axial localization along the mouse brain vascular tree of luminal sodium-dependent glutamine transporters Snat1 and Snat3. J Cereb Blood Flow Metab. 2011;31:1637–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhang Z, Grewer C. The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophys J. 2007;92:2621–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhang Z, Zander CB, Grewer C. The C-terminal domain of the neutral amino acid transporter SNAT2 regulates transport activity through voltage-dependent processes. Biochem J. 2011;434:287–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Forrest LR, Rudnick G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda). 2009;24:377–86.

    Article  CAS  Google Scholar 

  51. Kashiwagi H, Yamazaki K, Takekuma Y, Ganapathy V, Sugawara M. Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation. Amino Acids. 2009;36:219–30.

    Article  CAS  PubMed  Google Scholar 

  52. Gazzola RF, Sala R, Bussolati O, et al. The adaptive regulation of amino acid transport system A is associated to changes in ATA2 expression. FEBS Lett. 2001;490:11–4.

    Article  CAS  PubMed  Google Scholar 

  53. Brown MN, Mathews GC. Activity- and age-dependent modulation of GABAergic neurotransmission by system A-mediated glutamine uptake. J Neurochem. 2010;114:909–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Broer S, Brookes N. Transfer of glutamine between astrocytes and neurons. J Neurochem. 2001;77:705–19.

    Article  CAS  PubMed  Google Scholar 

  55. Conti F, Melone M. The glutamine commute: lost in the tube? Neurochem Int. 2006;48:459–64.

    Article  CAS  PubMed  Google Scholar 

  56. Chaudhry FA, Reimer RJ, Krizaj D, et al. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell. 1999;99:769–80.

    Article  CAS  PubMed  Google Scholar 

  57. Deitmer JW, Broer A, Broer S. Glutamine efflux from astrocytes is mediated by multiple pathways. J Neurochem. 2003;87:127–35.

    Article  CAS  PubMed  Google Scholar 

  58. Fremeau Jr RT, Burman J, Qureshi T, et al. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A. 2002;99:14488–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grant 2R01NS049335-06A1 awarded to C.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Grewer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zander, C., Zhang, Z., Albers, T., Grewer, C. (2015). Amino Acid Transporters and Glutamine. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics