Skip to main content

Leucine and Resveratrol: Experimental Model of Sirtuin Pathway Activation

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

The beneficial effects of leucine and resveratrol on health are largely dependent on activation of the sirtuin pathway. The silent information regulator (Sir) proteins, also called sirtuins, are a conserved family of histone and protein deacetylases that use NAD+ as a co-substrate [1]. This NAD+-dependence links sirtuins to the metabolic activity of cells, thus regulating numerous physiologic and metabolic pathways. Accordingly, they have been implicated in the prevention of metabolic disorders such as insulin resistance, diabetes, cardiovascular disease, cancer as well as aging [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Martinez-Pastor B, Mostoslavsky R. Sirtuins, metabolism, and cancer. Front Pharmacol. 2012;3:22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.

    CAS  PubMed  Google Scholar 

  4. Timmer S, Auwerx J, Schrauwen P. The journey of resveratrol from yeast to human. Aging (Albany NY). 2012;4:146–58.

    Google Scholar 

  5. Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8:157–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Park SJ, Ahmad F, Philp A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148:421–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15:675–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280:17187–95.

    Article  CAS  PubMed  Google Scholar 

  9. Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285:8340–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hubbard BP, Gomes AP, Dai H, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339:1216–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose Response. 2010;8:478–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Calabrese EJ, Mattson MP, Calabrese V. Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol. 2010;29:980–1015.

    Article  CAS  PubMed  Google Scholar 

  13. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–22.

    Article  CAS  PubMed  Google Scholar 

  14. Cho SJ, Jung UJ, Choi MS. Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr. 2012;1–10.

    Google Scholar 

  15. Boocock DJ, Faust GE, Patel KR, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev. 2007;16:1246–52.

    Article  CAS  PubMed  Google Scholar 

  16. Goldberg DM, Yan J, Soleas GJ. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem. 2003;36:79–87.

    Article  CAS  PubMed  Google Scholar 

  17. Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health–a comprehensive review of human clinical trials. Mol Nutr Food Res. 2011;55:1129–41.

    Article  CAS  PubMed  Google Scholar 

  18. Stipanuk MH. Leucine and protein synthesis: mTOR and beyond. Nutr Rev. 2007;65:122–9.

    Article  PubMed  Google Scholar 

  19. Zanchi NE, Nicastro H, Lancha Jr AH. Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies. Nutr Metab (Lond). 2008;5:20.

    Article  Google Scholar 

  20. Donato Jr J, Pedrosa RG, Cruzat VF, et al. Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition. 2006;22:520–7.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Guo K, LeBlanc RE, et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes. 2007;56:1647–54.

    Article  CAS  PubMed  Google Scholar 

  22. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.

    Article  PubMed Central  PubMed  Google Scholar 

  23. McCormack SE, Shaham O, McCarthy MA, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8:52–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mochida T, Tanaka T, Shiraki Y, et al. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol Genet Metab. 2011;103:406–9.

    Article  CAS  PubMed  Google Scholar 

  25. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Melnik BC. Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes. 2012;3:38–53.

    Article  PubMed Central  PubMed  Google Scholar 

  27. She P, Van Horn C, Reid T, et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293:E1552–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kuzuya T, Katano Y, Nakano I, et al. Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochem Biophys Res Commun. 2008;373:94–8.

    Article  CAS  PubMed  Google Scholar 

  29. Bajotto G, Murakami T, Nagasaki M, et al. Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus. Metabolism. 2009;58:1489–95.

    Article  CAS  PubMed  Google Scholar 

  30. Wang B, Kammer LM, Ding Z, et al. Amino acid mixture acutely improves the glucose tolerance of healthy overweight adults. Nutr Res. 2012;32:30–8.

    Article  PubMed  Google Scholar 

  31. Eller LK, Saha DC, Shearer J, et al. Dietary leucine improves whole-body insulin sensitivity independent of body fat in diet-induced obese Sprague-Dawley rats. J Nutr Biochem. 2013;24(7):1285–94.

    Article  CAS  PubMed  Google Scholar 

  32. Tang M, Armstrong CL, Leidy HJ, et al. Normal vs. high-protein weight loss diets in men: Effects on body composition and indices of metabolic syndrome. Obesity (Silver Spring). 2013;21:E204–10.

    Article  CAS  Google Scholar 

  33. Wycherley TP, Moran LJ, Clifton PM, et al. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96:1281–98.

    Article  CAS  PubMed  Google Scholar 

  34. Freudenberg A, Petzke KJ, Klaus S. Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J Nutr Biochem. 2012;23:1524–30.

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Zemel M. Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids. 2007;42:297–305.

    Article  CAS  PubMed  Google Scholar 

  36. Sun X, Zemel MB. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond). 2009;6:26.

    Article  Google Scholar 

  37. Bruckbauer A, Zemel MB. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutr Metab (Lond). 2011;8:91.

    Article  CAS  Google Scholar 

  38. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280:17038–45.

    Article  CAS  PubMed  Google Scholar 

  39. Almeida L, Vaz-da-Silva M, Falcao A, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. 2009;53 Suppl 1:S7–15.

    Article  PubMed  Google Scholar 

  40. Bruckbauer A, Zemel MB, Thorpe T, et al. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr Metab (Lond). 2012;9:77.

    Article  CAS  Google Scholar 

  41. Bruckbauer A, Baggett B, Zemel MB. Synergistic effects of polyphenols and β-hydroxy- β-butyrate (HMB) on energy metabolism. FASEB J. 2013;27:637.23.

    Google Scholar 

  42. Gertz M, Nguyen GT, Fischer F, et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One. 2012;7:e49761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801.

    Article  CAS  PubMed  Google Scholar 

  44. Jager S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104:12017–22.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Irrcher I, Ljubicic V, Kirwan AF, et al. AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells. PLoS One. 2008;3:e3614.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Brenmoehl J, Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. 2013;13(6):755–61.

    Article  CAS  PubMed  Google Scholar 

  47. Lan F, Cacicedo JM, Ruderman N, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008;283:27628–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009;458:1056–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Rardin MJ, Newman JC, Held JM, et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A. 2013;110:6601–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Green MF, Hirschey MD. SIRT3 weighs heavily in the metabolic balance: a new role for SIRT3 in metabolic syndrome. J Gerontol A Biol Sci Med Sci. 2013;68:105–7.

    Article  CAS  PubMed  Google Scholar 

  51. Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44:177–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102:401–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Schrauwen-Hinderling VB, Roden M, Kooi ME, et al. Muscular mitochondrial dysfunction and type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care. 2007;10:698–703.

    Article  CAS  PubMed  Google Scholar 

  54. Ren J, Pulakat L, Whaley-Connell A, et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med. 2010;88:993–1001.

    Article  CAS  PubMed  Google Scholar 

  55. Sparks LM, Xie H, Koza RA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005;54:1926–33.

    Article  CAS  PubMed  Google Scholar 

  56. Costa Cdos S, Hammes TO, Rohden F, et al. SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes Surg. 2010;20:633–9.

    Article  PubMed  Google Scholar 

  57. Xu F, Gao Z, Zhang J, et al. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology. 2010;151:2504–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Pfluger PT, Herranz D, Velasco-Miguel S, et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008;105:9793–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Chen S, Li J, Zhang Z, et al. Effects of resveratrol on the amelioration of insulin resistance in KKAy mice. Can J Physiol Pharmacol. 2012;90:237–42.

    Article  CAS  PubMed  Google Scholar 

  61. Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A. 2011;108:14608–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Gauthier MS, O’Brien EL, Bigornia S, et al. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun. 2011;404:382–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Zhang W, Zhang X, Wang H, et al. AMP-activated protein kinase alpha1 protects against diet-induced insulin resistance and obesity. Diabetes. 2012;61:3114–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Bikman BT, Zheng D, Reed MA, et al. Lipid-induced insulin resistance is prevented in lean and obese myotubes by AICAR treatment. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1692–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Liu Y, Wan Q, Guan Q, et al. High-fat diet feeding impairs both the expression and activity of AMPKa in rats’ skeletal muscle. Biochem Biophys Res Commun. 2006;339:701–7.

    Article  CAS  PubMed  Google Scholar 

  66. Little JP, Safdar A, Bishop D, et al. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1303–10.

    Article  CAS  PubMed  Google Scholar 

  67. Hood MS, Little JP, Tarnopolsky MA, et al. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–56.

    Article  CAS  PubMed  Google Scholar 

  68. Pucci B, Villanova L, Sansone L, et al. Sirtuins: the molecular basis of beneficial effects of physical activity. Intern Emerg Med. 2013;8 Suppl 1:S23–5.

    Article  PubMed  Google Scholar 

  69. Little JP, Safdar A, Benton CR, et al. Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab. 2011;36:598–607.

    Article  CAS  PubMed  Google Scholar 

  70. Stallknecht B, Vinten J, Ploug T, et al. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. Am J Physiol. 1991;261:E410–4.

    CAS  PubMed  Google Scholar 

  71. Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One. 2013;8:e60563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Huh JY, Panagiotou G, Mougios V, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61:1725–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Liu JJ, Wong MD, Toy WC, et al. Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications. 2013;27(4):365–9.

    Article  PubMed  Google Scholar 

  75. Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98:E769–78.

    Article  CAS  PubMed  Google Scholar 

  76. Bruckbauer A, Baggett B, Zemel MB. Synergistic effects of leucine and its metabolites with polyphenols on irisin in myotubes and diet-induced obese mice [abstract]. FASEB J. 2013;27:637.11.

    Google Scholar 

  77. Lipps J, Hagan S, Clark M, et al. Resveratrol synergy in pre-diabetes [Abstract 78-LB]. Diabetes. 2013;62:LB22.

    Article  Google Scholar 

  78. Zanchi NE, Gerlinger-Romero F, Guimaraes-Ferreira L, et al. HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids. 2011;40:1015–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Bruckbauer M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bruckbauer, A., Zemel, M.B. (2015). Leucine and Resveratrol: Experimental Model of Sirtuin Pathway Activation. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics