Skip to main content

Regulation of Liver Glucose Metabolism by the Metabolic Sensing of Leucine in the Hypothalamus

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1481 Accesses

Abstract

Amino acids exert powerful effects on insulin action and glucose metabolism through direct (substrate-like) as well indirect (hormonally mediated) mechanisms. The majority of these actions are mediated by tissues such as the skeletal muscle and the liver. In this chapter we discuss evidence indicating that leucine improves insulin action and liver glucose metabolism through a metabolic sensing network in the mediobasal hypothalamus (MBH). Leucine is metabolized in the MBH to generate a neurogenic signal that is relayed to the liver via the vagus nerve to modulate the partition of glucose fluxes resulting in an overall decrease of glucose output. We further postulate that the faltering of this central sensing mechanism leads to hyperglycemia suggesting that hypothalamic leucine sensing is required to maintain euglycemia. Failure of this sensing mechanism could be a contributing factor to the development of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P. A nutrient sensor mechanism controls Drosophila growth. Cell. 2003;114:739–49.

    Article  CAS  PubMed  Google Scholar 

  2. Cutler NS, Pan X, Heitman J, Cardenas ME. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell. 2001;12:4103–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Nobukuni T, Joaquin M, Roccio M, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. 2005;102:14238–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rossetti L, Rothman DL, DeFronzo RA, Shulman GI. Effect of dietary protein on in vivo insulin action and liver glycogen repletion. Am J Physiol. 1989;257:E212–9.

    CAS  PubMed  Google Scholar 

  5. Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998;101:1519–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nuttall FQ, Gannon MC, Saeed A, Jordan K, Hoover H. The metabolic response of subjects with type 2 diabetes to a high-protein, weight-maintenance diet. J Clin Endocrinol Metab. 2003;88:3577–83.

    Article  CAS  PubMed  Google Scholar 

  7. Gannon MC, Nuttall FQ, Saeed A, Jordan K, Hoover H. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am J Clin Nutr. 2003;78:734–41.

    CAS  PubMed  Google Scholar 

  8. Cota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312:927–30.

    Article  CAS  PubMed  Google Scholar 

  9. Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci. 2009;29:8302–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes. 2007;56:1647–54.

    Article  CAS  PubMed  Google Scholar 

  11. Guo K, Yu YH, Hou J, Zhang Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab (Lond). 2010;7:57.

    Article  Google Scholar 

  12. Floyd Jr JC, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by amino acids. J Clin Invest. 1966;45:1487–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ohneda A, Parada E, Eisentraut AM, Unger RH. Characterization of response of circulating glucagon to intraduodenal and intravenous administration of amino acids. J Clin Invest. 1968;47:2305–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Roden M, Perseghin G, Petersen KF, et al. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest. 1996;97:642–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Felig P. Amino acid metabolism in man. Annu Rev Biochem. 1975;44:933–55.

    Article  CAS  PubMed  Google Scholar 

  16. Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAMA. 2002;288:1723–7.

    Article  PubMed  Google Scholar 

  17. Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv Exp Med Biol. 2012;771:42–50.

    PubMed  Google Scholar 

  18. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.

    CAS  PubMed  Google Scholar 

  19. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376–82.

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz MW, Porte Jr D. Diabetes, obesity, and the brain. Science. 2005;307:375–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hu Z, Cha SH, Chohnan S, Lane MD. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci U S A. 2003;100:12624–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. He W, Lam TK, Obici S, Rossetti L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci. 2006;9:227–33.

    Article  CAS  PubMed  Google Scholar 

  23. Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science. 2005;309:943–7.

    Article  CAS  PubMed  Google Scholar 

  25. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–5.

    Article  CAS  PubMed  Google Scholar 

  26. Lam TK, Gutierrez-Juarez R, Pocai A, et al. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat Med. 2007;13:171–80.

    Article  CAS  PubMed  Google Scholar 

  27. Su Y, Lam TK, He W, et al. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes. 2012;61:85–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Arrieta-Cruz I, Su Y, Knight CM, Lam TK, Gutierrez-Juarez R. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats. Diabetes. 2013;62:1152–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr. 2000;130:1016S–22.

    CAS  PubMed  Google Scholar 

  30. Choi YH, Fletcher PJ, Anderson GH. Extracellular amino acid profiles in the paraventricular nucleus of the rat hypothalamus are influenced by diet composition. Brain Res. 2001;892:320–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lynch CJ, Halle B, Fujii H, et al. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab. 2003;285:E854–63.

    CAS  PubMed  Google Scholar 

  32. Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998;68:72–81.

    CAS  PubMed  Google Scholar 

  33. Gao Z, Young RA, Li G, et al. Distinguishing features of leucine and alpha-ketoisocaproate sensing in pancreatic beta-cells. Endocrinology. 2003;144:1949–57.

    Article  CAS  PubMed  Google Scholar 

  34. Harris RA, Paxton R, DePaoli-Roach AA. Inhibition of branched chain alpha-ketoacid dehydrogenase kinase activity by alpha-chloroisocaproate. J Biol Chem. 1982;257:13915–8.

    CAS  PubMed  Google Scholar 

  35. Pocai A, Lam TK, Gutierrez-Juarez R, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434:1026–31.

    Article  CAS  PubMed  Google Scholar 

  36. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem. 2000;275:9270–7.

    Article  CAS  PubMed  Google Scholar 

  37. Colombo JP, Cervantes H, Kokorovic M, Pfister U, Perritaz R. Effect of different protein diets on the distribution of amino acids in plasma, liver and brain in the rat. Ann Nutr Metab. 1992;36:23–33.

    Article  CAS  PubMed  Google Scholar 

  38. Peters JC, Harper AE. Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J Nutr. 1985;115:382–98.

    CAS  PubMed  Google Scholar 

  39. Block KP, Harper AE. High levels of dietary amino and branched-chain alpha-keto acids alter plasma and brain amino acid concentrations in rats. J Nutr. 1991;121:663–71.

    CAS  PubMed  Google Scholar 

  40. Tremblay F, Krebs M, Dombrowski L, et al. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes. 2005;54:2674–84.

    Article  CAS  PubMed  Google Scholar 

  41. She P, Reid TM, Bronson SK, et al. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 2007;6:181–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sherwin RS. Effect of starvation on the turnover and metabolic response to leucine. J Clin Invest. 1978;61:1471–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Nair KS, Matthews DE, Welle SL, Braiman T. Effect of leucine on amino acid and glucose metabolism in humans. Metabolism. 1992;41:643–8.

    Article  CAS  PubMed  Google Scholar 

  44. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem. 2004;279:31139–48.

    Article  CAS  PubMed  Google Scholar 

  47. McAuley KA, Hopkins CM, Smith KJ, et al. Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women. Diabetologia. 2005;48:8–16.

    Article  CAS  PubMed  Google Scholar 

  48. Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med. 2005;142:403–11.

    Article  CAS  PubMed  Google Scholar 

  49. McAuley KA, Smith KJ, Taylor RW, McLay RT, Williams SM, Mann JI. Long-term effects of popular dietary approaches on weight loss and features of insulin resistance. Int J Obes (Lond). 2006;30:342–9.

    Article  CAS  Google Scholar 

  50. Kimura K, Nakamura Y, Inaba Y, et al. Histidine augments the suppression of hepatic glucose production by central insulin action. Diabetes. 2013;62:2266.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Gutiérrez-Juárez M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gutiérrez-Juárez, R. (2015). Regulation of Liver Glucose Metabolism by the Metabolic Sensing of Leucine in the Hypothalamus. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics