Skip to main content

Effects of Leucine and Isoleucine on Glucose Metabolism

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

The branched chain amino acids (BCAAs) have recently been recognized as having functions other than simple nutrition. The signaling action of leucine in protein synthesis has been well studied, but the pharmacological effects of isoleucine and valine have not been clarified. It has recently been reported that, among the BCAAs, leucine and isoleucine act as signals in glucose metabolism. We revealed that isoleucine stimulates both glucose uptake in the muscle and whole body glucose oxidation, in addition to depressing gluconeogenesis in the liver, thereby leading to a hypoglycemic effect in rats. The major focus of this chapter is on the role of BCAAs in regulating glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshizawa F. Regulation of protein synthesis by branched-chain amino acids in vivo. Biochem Biophys Res Commun. 2004;313:417–22.

    Article  CAS  PubMed  Google Scholar 

  2. Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr. 2000;130:2413–9.

    CAS  PubMed  Google Scholar 

  3. Anthony TG, Anthony JC, Yoshizawa F, Kimball SR, Jefferson LS. Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr. 2001;131:1171–6.

    CAS  PubMed  Google Scholar 

  4. Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, Vary TC. Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab. 2002;283:E503–13.

    CAS  PubMed  Google Scholar 

  5. Doi M, Yamaoka I, Nakayama M, Mochizuki S, Sugahara K, Yoshizawa F. Isoleucine, a blood glucose-lowering amino acid, increases glucose uptake in rat skeletal muscle in the absence of increases in AMP-activated protein kinase activity. J Nutr. 2005;135:2103–8.

    CAS  PubMed  Google Scholar 

  6. Doi M, Yamaoka I, Nakayama M, Sugahara K, Yoshizawa F. Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2007;292:E1683–93.

    Article  CAS  PubMed  Google Scholar 

  7. Nishitani S, Matsumura T, Fujitani S, Sonaka I, Miura Y, Yagasaki K. Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun. 2002;299:693–6.

    Article  CAS  PubMed  Google Scholar 

  8. Chang TW, Goldberg AL. Leucine inhibits oxidation of glucose and pyruvate in skeletal muscles during fasting. J Biol Chem. 1978;253:3696–701.

    CAS  PubMed  Google Scholar 

  9. Flakoll PJ, Wentzel LS, Rice DE, Hill JO, Abumrad NN. Short-term regulation of insulin-mediated glucose utilization in four-day fasted human volunteers: role of amino acid availability. Diabetologia. 1992;35:357–66.

    Article  CAS  PubMed  Google Scholar 

  10. Tessari P, Inchiostro S, Biolo G, et al. Hyperaminoacidaemia reduces insulin-mediated glucose disposal in healthy man. Diabetologia. 1985;28:870–2.

    Article  CAS  PubMed  Google Scholar 

  11. Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem. 2001;276:38052–60.

    CAS  PubMed  Google Scholar 

  12. Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998;101:1519–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Takano A, Usui I, Haruta T, et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol. 2001;21:5050–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Peyrollier K, Hajduch E, Blair AS, Hyde R, Hundal HS. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport. Biochem J. 2000;350:361–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 2010;68:270–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology. 2005;146:1473–81.

    Article  CAS  PubMed  Google Scholar 

  17. Baum JI, O’Connor JC, Seyler JE, Anthony TG, Freund GG, Layman DK. Leucine reduces the duration of insulin-induced PI 3-kinase activity in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2005;288:E86–91.

    Article  CAS  PubMed  Google Scholar 

  18. Tappy L, Acheson K, Normand S, Pachiaudi C, Jéquier E, Riou JP. Effects of glucose and amino acid infusion on glucose turnover in insulin-resistant obese and type II diabetic patients. Metabolism. 1994;43:428–34.

    Article  CAS  PubMed  Google Scholar 

  19. Tappy L, Acheson K, Normand S, et al. Effects of infused amino acids on glucose production and utilization in healthy human subjects. Am J Physiol. 1992;262:E826–33.

    CAS  PubMed  Google Scholar 

  20. Fajans SS, Knopf RF, Floyd JC, Power L, Conn JW. The experimental induction in man of sensitivity of leucine hypoglycemia. J Clin Invest. 1963;42:216–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Milner RD. The stimulation of insulin release by essential amino acids from rabbit pancreas in vitro. J Endocrinol. 1970;47:347–56.

    Article  CAS  PubMed  Google Scholar 

  22. Utsugi T, Yoshida A, Kanda T, et al. Oral administration of branched chain amino acids improves virus-induced glucose intolerance in mice. Eur J Pharmacol. 2000;398:409–14.

    Article  CAS  PubMed  Google Scholar 

  23. Eizirik DL, Kettelhut IC, Migliorini RH. Administration of branched-chain amino acids reduces the diabetogenic effect of streptozotocin in rats. Braz J Med Biol Res. 1987;20:137–44.

    CAS  PubMed  Google Scholar 

  24. Doi M, Yamaoka I, Fukunaga T, Nakayama M. Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochem Biophys Res Commun. 2003;312:1111–7.

    Google Scholar 

  25. Nuttall FQ, Schweim K, Gannon MC. Effect of orally administered isoleucine with and without glucose on insulin, glucagon and glucose concentrations in non-diabetic subjects. E Spen Eur E J Clin Nutr Metab. 2008;3:e152–8.

    Article  Google Scholar 

  26. Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996;271:611–4.

    Article  CAS  PubMed  Google Scholar 

  27. Goldstein L, Newsholme EA. The formation of alanine from amino acids in diaphragm muscle of the rat. Biochem J. 1976;154:555–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1292–12300.

    Article  CAS  PubMed  Google Scholar 

  29. Kim HI, Ahn YH. Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes. 2004;53 Suppl 1:S60–5.

    Article  CAS  PubMed  Google Scholar 

  30. Higuchi N, Kato M, Miyazaki M, et al. Potential role of branched-chain amino acids in glucose metabolism through the accelerated induction of the glucose-sensing apparatus in the liver. J Cell Biochem. 2011;112:30–8.

    Article  CAS  PubMed  Google Scholar 

  31. Leturque A, Brot-Laroche E, Le Gall M, Stolarczyk E, Tobin V. The role of GLUT2 in dietary sugar handling. J Physiol Biochem. 2005;61:529–37.

    Article  CAS  PubMed  Google Scholar 

  32. Iynedjian PB, Gjinovci A, Renold AE. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem. 1988;263:740–4.

    CAS  PubMed  Google Scholar 

  33. Magnuson MA, Andreone TL, Printz RL, Koch S, Granner DK. Rat glucokinase gene: structure and regulation by insulin. Proc Natl Acad Sci U S A. 1989;86:4838–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Im SS, Kang SY, Kim SY, et al. Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes. 2005;54:1684–91.

    Article  CAS  PubMed  Google Scholar 

  35. Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996;98:378–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Iynedjian PB, Hanson RW. Increase in level of functional messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3′: 5′-monophosphate. J Biol Chem. 1977;252:655–62.

    CAS  PubMed  Google Scholar 

  37. Xu H, Yang Q, Shen M, et al. Dual specificity MAPK phosphatase 3 activates PEPCK gene transcription and increases gluconeogenesis in rat hepatoma cells. J Biol Chem. 2005;280:36013–8.

    Article  CAS  PubMed  Google Scholar 

  38. Bröer A, Klingel K, Kowalczuk S, Rasko JE, Cavanaugh J, Bröer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem. 2004;279:24467–76.

    Google Scholar 

  39. Bröer A, Tietze N, Kowalczuk S, et al. The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem J. 2006;393:421–30.

    Google Scholar 

  40. Kalogeropoulou D, LaFave L, Schweim K, Gannon MC, Nuttall FQ. Leucine, when ingested with glucose, synergistically stimulates insulin secretion and lowers blood glucose. Metabolism. 2008;57:1747–52.

    Google Scholar 

  41. Kawaguchi T, Nagao Y, Matsuoka H, Ide T, Sata M. Branched-chain amino acid-enriched supplementation improves insulin resistance in patients with chronic liver disease. Int J Mol Med. 2008;22:105–12.

    PubMed  Google Scholar 

  42. Korenaga K, Korenaga M, Uchida K, Yamasaki T, Sakaida I. Effects of a late evening snack combined with alpha-glucosidase inhibitor on liver cirrhosis. Hepatol Res. 2008;38:1087–97.

    Article  CAS  PubMed  Google Scholar 

  43. Takeshita Y, Takamura T, Kita Y, et al. Beneficial effect of branched-chain amino acid supplementation on glycemic control in chronic hepatitis C patients with insulin resistance: implications for type 2 diabetes. Metabolism. 2012;61:1388–94.

    Article  CAS  PubMed  Google Scholar 

  44. Lu J, Xie G, Jia W, Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013;7:53–9.

    Article  PubMed  Google Scholar 

  45. Tulipano G, Sibilia V, Caroli AM, Cocchi D. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides. 2011;32:835–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiaki Yoshizawa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoshizawa, F. (2015). Effects of Leucine and Isoleucine on Glucose Metabolism. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics