Skip to main content

Branched Chain Amino Acids in Experimental Models of Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Abstract

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease whose etiology is still obscure. The most common mutations found in familiar ALS are localized in the gene codifying the copper-zinc superoxide dismutase 1 (SOD1) enzyme which, however, explains only about 20% of familiar ALS and 2% of the sporadic form of this disease.

The vast majority of patients is affected by the sporadic form of the disease and a possible role of environmental factors interacting with several defective genes may be suggested. In particular, several epidemiological studies have shown a higher risk of ALS among Italian and American soccer players; among the possible risk factors, the excessive use of dietary integrators, specifically the branched-chain amino acids (BCAAs) valine, isoleucine and leucine has attracted some interest.

The hypothesis of potential neurotoxic effects of BCAAs on brain functions is supported by the evidences that BCAAs enter the brain through a transporter located at the blood-brain barrier, where they contribute to de novo synthesis of glutamate, the principal excitatory neurotransmitter of the central nervous system.

In this chapter we will briefly present four studies investigating the potential neurotoxicity of BCAAs and their possible implication in neurodegenerative diseases with either in vitro or in vivo models.

Our in vitro results suggest that BCAAs are neurotoxic in both neuronal and astrocytic cultures through the overstimulation of glutamate pathways: BCAAs alter the expression of genes linked to oxidative stress and to immune properties of microglial cells, possibly favoring the onset of neurodegeneration. Furthermore, our in vivo findings confirmed that chronic dietary intake of BCAAs worsens the motor coordination deficit of the G93A-SOD1 mice, a transgenic model of ALS. In addition, the electrophysiological results indicated that the BCAA diet restored the glutamate neurotransmission, normally altered in this strain of mutated mice.

Overall, our experimental evidences provide a possible link between an environmental factor (high intake of BCAAs) and the increased risk of neurotoxic/neurodegenerative damage in individuals with a specific genetic predisposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013;14:248–64.

    Article  CAS  PubMed  Google Scholar 

  2. Bendotti C, Carri MT. Lessons from models of SOD1-linked familial ALS. Trends Mol Med. 2004;10:393–400.

    Article  CAS  PubMed  Google Scholar 

  3. Gurney ME, Pu H, Chiu AY, Dal Canto MC, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264:1772–5.

    Article  CAS  PubMed  Google Scholar 

  4. Vucic S, Kierna MC. Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis. Curr Mol Med. 2009;9:255–72.

    Article  CAS  PubMed  Google Scholar 

  5. Shaw CA, Höglinger GU. Neurodegenerative diseases: neurotoxins as sufficient etiologic agents? Neuromolecular Med. 2008;10:1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Belli S, Vanacore N. Proportionate mortality of Italian soccer players: is amyotrophic lateral sclerosis an occupational disease? Eur J Epidemiol. 2005;20:237–42.

    Article  PubMed  Google Scholar 

  7. Vanacore N, Binazzi A, Bottazzi M, Belli S. Amyotrophic lateral sclerosis in an Italian professional soccer player. Parkinsonism Relat Disord. 2006;12:327–9.

    Article  PubMed  Google Scholar 

  8. Abel EL. Football increases the risk for Lou Gehrig’s disease, amyotrophic lateral sclerosis. Percept Mot Skills. 2007;104:1251–4.

    PubMed  Google Scholar 

  9. Davis JM, Alderson NL, Welsh RS. Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr. 2000;72(2 Suppl):573S–8.

    CAS  PubMed  Google Scholar 

  10. Fernstorm JD. Branched-chain amino acids and brain function. American Society of Nutritional Sciences, 4th Amino Acid Assessment workshop, 2005.

    Google Scholar 

  11. Tandan R, Bromberg MB, Forshew D, Fries TJ, et al. A controlled trial of amino acid therapy in amyotrophic lateral sclerosis: I. Clinical, functional, and maximum isometric torque data. Neurology. 1996;47:1220–6.

    Article  CAS  PubMed  Google Scholar 

  12. Zinnanti WJ, Lazovic J. Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J Inherit Metab Dis. 2012;35:71–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wajner M, Coelho DM, Barschak AG, Araujo PR, Pires F, Lulhier FLG, Vargas CR. Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis. 2000;23:505–12.

    Article  CAS  PubMed  Google Scholar 

  14. Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137(6 Suppl 1):1539S–47.

    CAS  PubMed  Google Scholar 

  15. Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM. Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem. 2001;76:1712–23.

    Article  CAS  PubMed  Google Scholar 

  16. Baker DH. Tolerance for branched-chain amino acids in experimental animals and humans. J Nutr. 2005;135:1585S–90.

    CAS  PubMed  Google Scholar 

  17. Hutson SM, Sweatt AJ, Lanoue KF. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes. J Nutr. 2005;135:1557S–64.

    CAS  PubMed  Google Scholar 

  18. Pencharz PB, Elango R, Ball RO. Determination of the tolerable upper intake level of leucine in adult men. J Nutr. 2012;142:2220S–4.

    Article  CAS  PubMed  Google Scholar 

  19. Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics. 2011;127:511–28.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Contrusciere V, Paradisi S, Matteucci A, Malchiodi-Albedi F. Branched-chain amino acids induce neurotoxicity in rat cortical cultures. Neurotox Res. 2010;17:392–8.

    Article  CAS  PubMed  Google Scholar 

  21. De Simone R, Vissicchio F, Mingarelli C, De Nuccio C, Visentin S, Ajmone-Cat MA, Minghetti L. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832(5):650–9.

    Article  PubMed  Google Scholar 

  22. Piscopo P, Crestini A, Adduci A, Ferrante A, Massari M, Popoli P, Vanacore N, Confaloni A. Altered oxidative stress profile in the cortex of mice fed an enriched branched-chain amino acids diet: possible link with amyotrophic lateral sclerosis? J Neurosci Res. 2011;89(8):1276–83.

    Article  CAS  PubMed  Google Scholar 

  23. Venerosi A, Martire A, Rungi A, Pieri M, Ferrante A, Zona C, Popoli P, Calamandrei G. Complex behavioural and synaptic effects of dietary branched chain amino acids in a mouse model of amyotrophic lateral sclerosis. Mol Nutr Food Res. 2011;55(4):541–52.

    Article  CAS  PubMed  Google Scholar 

  24. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  PubMed  Google Scholar 

  25. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol. 2009;4:399–418.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Dibaj P, Steffens H, Zschüntzsch J, Nadrigny F, Schomburg ED, Kirchhoff F, Neusch C. In vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS. PLoS One. 2011;6:e17910.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, Oregan JP, Deng HX, Rahmani Z, Krizus A, Mckennayasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Vandenbergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericakvance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH. Mutations in Cu/Zn superoxide-dismutase gene are associated with familial amyotrophic-lateral-sclerosis. Nature. 1993;362:59–62.

    Article  CAS  PubMed  Google Scholar 

  28. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science. 1993;261:1047–51.

    Article  CAS  PubMed  Google Scholar 

  29. Andrus PK, Fleck TJ, Gurney ME, Hall ED. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem. 1998;71:2041–8.

    Article  CAS  PubMed  Google Scholar 

  30. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7:710–23.

    Article  CAS  PubMed  Google Scholar 

  31. Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta. 2006;1762:1051–67.

    Article  CAS  PubMed  Google Scholar 

  32. Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal. 2008;10:405–43.

    Article  CAS  PubMed  Google Scholar 

  33. De Lorenzo A, Petroni ML, Masala S, Melchiorri G, Pietrantuono M, Perriello G, Andreoli A. Effect of acute and chronic branched chain amino acids on energy metabolism and muscle performance. Diabetes Nutr Metab. 2003;2003(16):291–7.

    Google Scholar 

  34. Khan AA, Wang Y, Sun Y, Mao XO, Xie L, Miles E, Graboski J, Chen S, Ellerby LM, Jin K, Greenberg DA. Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci U S A. 2006;103:17944–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mammen PP, Shelton JM, Ye Q, Kanatous SB, Mc Grath AJ, Richardson JA, Garry DJ. Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J Histochem Cytochem. 2006;54:1349–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. He Y, Hua Y, Liu W, Hu H, Keep RF, Xi G. Effects of cerebral ischemia on neuronal hemoglobin. J Cereb Blood Flow Metab. 2009;29:596–605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown Jr RH, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001;29:166–73.

    Article  CAS  PubMed  Google Scholar 

  38. Rowland LP. Primary lateral sclerosis, hereditary spastic paraplegia, and mutations in the alsin gene: historical background for the first International Conference. Amyotroph Lateral Scler Other Motor Neuron Disord. 2005;6:67–76.

    Article  PubMed  Google Scholar 

  39. Sala G, Beretta S, Ceresa C, Mattavelli L, et al. Impairment of glutamate transport and increased vulnerability to oxidative stress in neuroblastoma SH-SY5Y cells expressing a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis. Neurochem Int. 2005;46:227–34.

    Article  CAS  PubMed  Google Scholar 

  40. Trotti D, Rolfs A, Danbolt NC, Brown Jr RH, Hediger MA. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci. 1999;2:427–33.

    Article  CAS  PubMed  Google Scholar 

  41. Carunchio I, Curcio L, Pieri M, Pica F, Caioli S, Viscomi MT, Molinari M, Canu N, Bernardi G, Zona C. Increased levels of p70S6 phosphorylation in the G93A mouse model of amyotrophic lateral sclerosis and in valine-exposed cortical neurons in culture. Exp Neurol. 2010;226:218–30.

    Article  CAS  PubMed  Google Scholar 

  42. Scaini G, Mello-Santos LM, Furlanetto CB, Jeremias IC, Mina F, Schuck PF, Ferreira GC, Kist LW, Pereira TC, Bogo MR, Streck EL. Acute and chronic administration of the branched-chain amino acids decrease nerve growth factor in rat hippocampus. Mol Neurobiol. 2013;48(3):581–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Calamandrei Master Degree in Biology .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Felice, A. et al. (2015). Branched Chain Amino Acids in Experimental Models of Amyotrophic Lateral Sclerosis. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics