Skip to main content

Anorexia and Valine-Deficient Diets

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

The hypothalamic signaling pathways that regulate food intake have been studied in detail. The arcuate nucleus of the hypothalamus contains neuropeptide Y (NPY)/agouti-related protein (AGRP) and pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART) neurons, and the activation of NPY/AGRP or POMC/CART neurons stimulates or inhibits feeding behavior, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–8.

    Article  CAS  PubMed  Google Scholar 

  2. Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123(4):1120–8.

    Article  CAS  PubMed  Google Scholar 

  3. Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A. 2004;101(13):4679–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Willesen MG, Kristensen P, Romer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70(5):306–16.

    Article  CAS  PubMed  Google Scholar 

  5. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes. 2001;50(11):2438–43.

    Article  CAS  PubMed  Google Scholar 

  6. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004;145(6):2607–12.

    Article  CAS  PubMed  Google Scholar 

  7. Johansen JE, Fetissov S, Fischer H, Arvidsson S, Hokfelt T, Schalling M. Approaches to anorexia in rodents: focus on the anx/anx mouse. Eur J Pharmacol. 2003;480(1–3):171–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ooyama K, Kojima K, Aoyama T, Takeuchi H. Decrease of food intake in rats after ingestion of medium-chain triacylglycerol. J Nutr Sci Vitaminol. 2009;55(5):423–7.

    Article  CAS  PubMed  Google Scholar 

  9. Jing MY, Sun JY, Weng XY. Insights on zinc regulation of food intake and macronutrient selection. Biol Trace Elem Res. 2007;115(2):187–94.

    Article  CAS  PubMed  Google Scholar 

  10. Tordoff MG, Friedman MI. Hepatic portal glucose infusions decrease food intake and increase food preference. Am J Physiol. 1986;251(1 Pt 2):R192–6.

    CAS  PubMed  Google Scholar 

  11. Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol. 2012;302(10):R1119–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mercer LP, Kelley DS, Haq A, Humphries LL. Dietary induced anorexia: a review of involvement of the histaminergic system. J Am Coll Nutr. 1996;15(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  13. Gietzen DW, Rogers QR. Nutritional homeostasis and indispensable amino acid sensing: a new solution to an old puzzle. Trends Neurosci. 2006;29(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kilberg MS, Pan YX, Chen H, Leung-Pineda V. Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr. 2005;25:59–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J Nutr. 2003;133(1):261S–7.

    PubMed  Google Scholar 

  16. Hutson SM. Subcellular distribution of branched-chain aminotransferase activity in rat tissues. J Nutr. 1988;118(12):1475–81.

    CAS  PubMed  Google Scholar 

  17. Nagao K, Bannai M, Seki S, Mori M, Takahashi M. Adaptational modification of serine and threonine metabolism in the liver to essential amino acid deficiency in rats. Amino Acids. 2009;36(3):555–62.

    Article  CAS  PubMed  Google Scholar 

  18. Shikata N, Maki Y, Noguchi Y, et al. Multi-layered network structure of amino acid (AA) metabolism characterized by each essential AA-deficient condition. Amino Acids. 2007;33(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  19. Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011;81(2–3):101–7.

    Article  CAS  PubMed  Google Scholar 

  20. Goto S, Nagao K, Bannai M, et al. Anorexia in rats caused by a valine-deficient diet is not ameliorated by systemic ghrelin treatment. Neuroscience. 2010;166(1):333–40.

    Article  CAS  PubMed  Google Scholar 

  21. Nakahara K, Takata S, Ishii A, et al. Somatostatin is involved in anorexia in mice fed a valine-deficient diet. Amino Acids. 2012;42(4):1397–404.

    Article  CAS  PubMed  Google Scholar 

  22. Rudell JB, Rechs AJ, Kelman TJ, Ross-Inta CM, Hao S, Gietzen DW. The anterior piriform cortex is sufficient for detecting depletion of an indispensable amino acid, showing independent cortical sensory function. J Neurosci. 2011;31(5):1583–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–54.

    Article  CAS  PubMed  Google Scholar 

  24. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    Article  CAS  Google Scholar 

  25. Winston AP. The clinical biochemistry of anorexia nervosa. Ann Clin Biochem. 2012;49(Pt 2):132–43.

    Article  CAS  PubMed  Google Scholar 

  26. Hawkins RA, Williamson DH, Krebs HA. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J. 1971;122(1):13–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Bannai Ph.D. .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest and Funding Disclosure

Author disclosures: T. T., C. F., H. M., and M. B. are employees of Ajinomoto Co., Inc.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takimoto, T., Furuta, C., Murakami, H., Bannai, M. (2015). Anorexia and Valine-Deficient Diets. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics