Skip to main content

Branched Chain Amino Acid Oxidation Disorders

  • Chapter
  • First Online:
Branched Chain Amino Acids in Clinical Nutrition

Abstract

Leucine, isoleucine and valine are neutral, aliphatic amino acids (AAs) which each contain a methyl branch in their side chain. Proper homeostasis requires the unimpaired degradation of these amino acids which occurs in mitochondria via the concerted action of a series of enzymes with acetyl-CoA, propionyl-CoA and acetoacetic acid as final end products. Defects in 11 of the 13 enzymes involved in the degradation of the different coenzyme A esters formed after transamination followed by oxidative decarboxylation have been described in literature. In this Chapter we will describe these enzyme deficiencies in detail

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roe CR, Cederbaum SD, Roe DS, Mardach R, Galindo A, Sweetman L. Isolated isobutyryl-CoA dehydrogenase deficiency: an unrecognized defect in human valine metabolism. Mol Genet Metab. 1998;65:264–71.

    Article  CAS  PubMed  Google Scholar 

  2. Koeberl DD, Young SP, Gregersen NS, et al. Rare disorders of metabolism with elevated butyryl- and isobutyryl-carnitine detected by tandem mass spectrometry newborn screening. Pediatr Res. 2003;54:219–23.

    Article  CAS  PubMed  Google Scholar 

  3. Sass JO, Sander S, Zschocke J. Isobutyryl-CoA dehydrogenase deficiency: isobutyrylglycinuria and ACAD8 gene mutations in two infants. J Inherit Metab Dis. 2004;27:741–5.

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen CB, Bischoff C, Christensen E, et al. Variations in IBD (ACAD8) in children with elevated C4-carnitine detected by tandem mass spectrometry newborn screening. Pediatr Res. 2006;60:315–20.

    Article  CAS  PubMed  Google Scholar 

  5. Oglesbee D, He M, Majumder N, et al. Development of a newborn screening follow-up algorithm for the diagnosis of isobutyryl-CoA dehydrogenase deficiency. Genet Med. 2007;9:108–16.

    Article  CAS  PubMed  Google Scholar 

  6. Brown GK, Hunt SM, Scholem R, et al. Beta-hydroxyisobutyryl coenzyme A deacylase deficiency: a defect in valine metabolism associated with physical malformations. Pediatrics. 1982;70:532–8.

    CAS  PubMed  Google Scholar 

  7. Loupatty FJ, Clayton PT, Ruiter JPN, et al. Mutations in the gene encoding 3-hydroxyisobutyryl-CoA hydrolase results in progressive infantile neurodegeneration. Am J Hum Genet. 2007;80:195–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Loupatty FJ, van der Steen A, IJlst L, et al. Clinical, biochemical, and molecular findings in three patients with 3-hydroxyisobutyric aciduria. Mol Genet Metab. 2006;87:243–8.

    Article  CAS  PubMed  Google Scholar 

  9. Pollitt RJ, Green A, Smith R. Excessive excretion of beta-alanine and of 3-hydroxypropionic, R- and S-3-aminoisobutyric, R- and S-3-hydroxyisobutyric and S-2-(hydroxymethyl)butyric acids probably due to a defect in the metabolism of the corresponding malonic semialdehydes. J Inherit Metab Dis. 1985;8:75–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gray RG, Pollitt RJ, Webley J. Methylmalonic semialdehyde dehydrogenase deficiency: demonstration of defective valine and beta-alanine metabolism and reduced malonic semialdehyde dehydrogenase activity in cultured fibroblasts. Biochem Med Metab Biol. 1987;38:121–4.

    Article  CAS  PubMed  Google Scholar 

  11. Goodwin GW, Rougraff PM, Davis EJ, Harris RA. Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver. Identity to malonate-semialdehyde dehydrogenase. J Biol Chem. 1989;264:14965–71.

    CAS  PubMed  Google Scholar 

  12. Kedishvili NY, Popov KM, Rougraff PM, Zhao Y, Crabb DW, Harris RA. CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member of the aldehyde dehydrogenase superfamily. cDNA cloning, evolutionary relationships, and tissue distribution. J Biol Chem. 1992;267:19724–9.

    CAS  PubMed  Google Scholar 

  13. Chambliss KL, Gray RG, Rylance G, Pollitt RJ, Gibson KM. Molecular characterization of methylmalonate semialdehyde dehydrogenase deficiency. J Inherit Metab Dis. 2000;23:497–504.

    Article  CAS  PubMed  Google Scholar 

  14. Sass JO, Walter M, Shield JP, et al. 3-Hydroxyisobutyrate aciduria and mutations in the ALDH6A1 gene coding for methylmalonate semialdehyde dehydrogenase. J Inherit Metab Dis. 2012;35:437–42.

    Article  CAS  PubMed  Google Scholar 

  15. Shield JP, Gough R, Allen J, Newbury-Ecob R. 3-Hydroxyisobutyric aciduria: phenotypic heterogeneity within a single family. Clin Dysmorphol. 2001;10:189–91.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka K, Budd MA, Efron ML, Isselbacher KJ. Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A. 1966;56:236–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C:95–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tokatli A, Coskun T, Ozalp I. Isovaleric acidemia. Clinical presentation of 6 cases. Turk J Pediatr. 1998;40:111–9.

    CAS  PubMed  Google Scholar 

  19. Tanaka K. Isovaleric acidemia: personal history, clinical survey and study of the molecular basis. Prog Clin Biol Res. 1990;321:273–90.

    CAS  PubMed  Google Scholar 

  20. Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75:1136–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gregersen N, Kolvraa S, Mortensen PB. Acyl-CoA: glycine N-acyltransferase: in vitro studies on the glycine conjugation of straight- and branched-chained acyl-CoA esters in human liver. Biochem Med Metab Biol. 1986;35:210–8.

    Article  CAS  PubMed  Google Scholar 

  22. Roe CR, Millington DS, Maltby DA, Kahler SG, Bohan TP. L-Carnitine therapy in isovaleric acidemia. J Clin Invest. 1984;74:2290–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tanaka K, Isselbacher KJ. The isolation and identification of N-isovalerylglycine from urine of patients with isovaleric acidemia. J Biol Chem. 1967;242:2966–72.

    CAS  PubMed  Google Scholar 

  24. Cohn RM, Yudkoff M, Rothman R, Segal S. Isovaleric acidemia: use of glycine therapy in neonates. N Engl J Med. 1978;299:996–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yudkoff M, Cohn RM, Puschak R, Rothman R, Segal S. Glycine therapy in isovaleric acidemia. J Pediatr. 1978;92:813–7.

    Article  CAS  PubMed  Google Scholar 

  26. Eminoglu FT, Ozcelik AA, Okur I, et al. 3-Methylcrotonyl-CoA carboxylase deficiency: phenotypic variability in a family. J Child Neurol. 2009;24:478–81.

    Article  PubMed  Google Scholar 

  27. Visser G, Suormala T, Smit GP, et al. 3-Methylcrotonyl-CoA carboxylase deficiency in an infant with cardiomyopathy, in her brother with developmental delay and in their asymptomatic father. Eur J Pediatr. 2000;159:901–4.

    Article  CAS  PubMed  Google Scholar 

  28. Grunert SC, Stucki M, Morscher RJ, et al. 3-Methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymatic and molecular studies in 88 individuals. Orphanet J Rare Dis. 2012;7:31.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Stadler SC, Polanetz R, Maier EM, et al. Newborn screening for 3-methylcrotonyl-CoA carboxylase deficiency: population heterogeneity of MCCA and MCCB mutations and impact on risk assessment. Hum Mutat. 2006;27:748–59.

    Article  CAS  PubMed  Google Scholar 

  30. Uematsu M, Sakamoto O, Sugawara N, et al. Novel mutations in five Japanese patients with 3-methylcrotonyl-CoA carboxylase deficiency. J Hum Genet. 2007;52:1040–3.

    Article  CAS  PubMed  Google Scholar 

  31. Dantas MF, Suormala T, Randolph A, et al. 3-Methylcrotonyl-CoA carboxylase deficiency: mutation analysis in 28 probands, 9 symptomatic and 19 detected by newborn screening. Hum Mutat. 2005;26:164.

    Article  PubMed  Google Scholar 

  32. Ihara K, Kuromaru R, Inoue Y, et al. An asymptomatic infant with isolated 3-methylcrotonyl-coenzyme: a carboxylase deficiency detected by newborn screening for maple syrup urine disease. Eur J Pediatr. 1997;156:713–5.

    Article  CAS  PubMed  Google Scholar 

  33. Wortmann SB, Kluijtmans LA, Rodenburg RJ, et al. 3-Methylglutaconic aciduria—lessons from 50 genes and 977 patients. J Inherit Metab Dis. 2013;36(6):913–21.

    Article  CAS  PubMed  Google Scholar 

  34. Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci. 1983;62:327–55.

    Article  CAS  PubMed  Google Scholar 

  35. Clarke SL, Bowron A, Gonzalez IL, et al. Barth syndrome. Orphanet J Rare Dis. 2013;8:23.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wortmann SB, Vaz FM, Gardeitchik T, et al. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet. 2012;44:797–802.

    Article  CAS  PubMed  Google Scholar 

  37. Costeff H, Gadoth N, Apter N, Prialnic M, Savir H. A familial syndrome of infantile optic atrophy, movement disorder, and spastic paraplegia. Neurology. 1989;39:595–7.

    Article  CAS  PubMed  Google Scholar 

  38. Davey KM, Parboosingh JS, McLeod DR, et al. Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet. 2006;43:385–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Honzik T, Tesarova M, Mayr JA, et al. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch Dis Child. 2010;95:296–301.

    Article  PubMed  Google Scholar 

  40. Duran M, Beemer FA, Tibosch AS, Bruinvis L, Ketting D, Wadman SK. Inherited 3-methylglutaconic aciduria in two brothers—another defect of leucine metabolism. J Pediatr. 1982;101:551–4.

    Article  CAS  PubMed  Google Scholar 

  41. Wortmann SB, Kremer BH, Graham A, et al. 3-Methylglutaconic aciduria type I redefined A syndrome with late-onset leukoencephalopathy. Neurology. 2010;75:1079–83.

    Article  CAS  PubMed  Google Scholar 

  42. Loupatty FJ, Ruiter JPN, IJlst L, Duran M, Wanders RJA. Direct nonisotopic assay of 3-methylglutaconyl-CoA hydratase in cultured human skin fibroblasts to specifically identify patients with 3-methylglutaconic aciduria type I. Clin Chem. 2004;50:1447–50.

    Article  CAS  PubMed  Google Scholar 

  43. IJlst L, Loupatty FJ, Ruiter JPN, Duran M, Lehnert W, Wanders RJA. 3-Methylglutaconic aciduria type I is caused by mutations in AUH. Am J Hum Genet. 2002;71:1463–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ly TB, Peters V, Gibson KM, et al. Mutations in the AUH gene cause 3-methylglutaconic aciduria type I. Hum Mutat. 2003;21:401–7.

    Article  CAS  PubMed  Google Scholar 

  45. Faull KF, Bolton PD, Halpern B, Hammond J, Danks DM. The urinary organic acid profile associated with 3-hydroxy-3-methylglutaric aciduria. Clin Chim Acta. 1976;73:553–9.

    Article  CAS  PubMed  Google Scholar 

  46. Wanders RJA, Zoeters PH, Schutgens RBH, et al. Rapid diagnosis of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency via enzyme activity measurements in leukocytes or platelets using a simple spectrophotometric method. Clin Chim Acta. 1990;189:327–34.

    Article  CAS  PubMed  Google Scholar 

  47. Gibson KM, Burlingame TG, Hogema B, et al. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: a new inborn error of L-isoleucine metabolism. Pediatr Res. 2000;47:830–3.

    Article  CAS  PubMed  Google Scholar 

  48. Andresen BS, Christensen E, Corydon TJ, et al. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism. Am J Hum Genet. 2000;67:1095–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Madsen PP, Kibaek M, Roca X, et al. Short/branched-chain acyl-CoA dehydrogenase deficiency due to an IVS3 + 3A > G mutation that causes exon skipping. Hum Genet. 2006;118:680–90.

    Article  CAS  PubMed  Google Scholar 

  50. Sass JO, Ensenauer R, Roschinger W, et al. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism. Mol Genet Metab. 2008;93:30–5.

    Article  CAS  PubMed  Google Scholar 

  51. Alfardan J, Mohsen AW, Copeland S, et al. Characterization of new ACADSB gene sequence mutations and clinical implications in patients with 2-methylbutyrylglycinuria identified by newborn screening. Mol Genet Metab. 2010;100:333–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Zschocke J, Ruiter JPN, Brand J, et al. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res. 2000;48:852–5.

    Article  CAS  PubMed  Google Scholar 

  53. Ofman R, Ruiter JPN, Feenstra M, et al. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet. 2003;72:1300–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zschocke J. HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J Inherit Metab Dis. 2012;35:81–9.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Villoria J, Navarro-Sastre A, Fons C, et al. Study of patients and carriers with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: difficulties in the diagnosis. Clin Biochem. 2009;42:27–33.

    Article  CAS  PubMed  Google Scholar 

  56. Perez-Cerda C, Garcia-Villoria J, Ofman R, et al. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: an X-linked inborn error of isoleucine metabolism that may mimic a mitochondrial disease. Pediatr Res. 2005;58:488–91.

    Article  PubMed  Google Scholar 

  57. Rauschenberger K, Scholer K, Sass JO, et al. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med. 2010;2:51–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell. 2008;135:462–74.

    Article  CAS  PubMed  Google Scholar 

  59. Daum RS, Lamm PH, Mamer OA, Scriver CR. A “new” disorder of isoleucine catabolism. Lancet. 1971;2:1289–90.

    Article  CAS  PubMed  Google Scholar 

  60. Robinson BH, Sherwood WG, Taylor J, Balfe JW, Mamer OA. Acetoacetyl CoA thiolase deficiency: a cause of severe ketoacidosis in infancy simulating salicylism. J Pediatr. 1979;95:228–33.

    Article  CAS  PubMed  Google Scholar 

  61. Middleton B, Bartlett K. The synthesis and characterisation of 2-methylacetoacetyl coenzyme A and its use in the identification of the site of the defect in 2-methylacetoacetic and 2-methyl-3-hydroxybutyric aciduria. Clin Chim Acta. 1983;128:291–305.

    Article  CAS  PubMed  Google Scholar 

  62. Fukao T, Yamaguchi S, Orii T, Hashimoto T. Molecular basis of beta-ketothiolase deficiency: mutations and polymorphisms in the human mitochondrial acetoacetyl-coenzyme A thiolase gene. Hum Mutat. 1995;5:113–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. A. Wanders Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wanders, R.J.A., Duran, M., Loupatty, F. (2015). Branched Chain Amino Acid Oxidation Disorders. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics