Skip to main content

Use of 2H3-Leucine to Monitor Apoproteins

  • Chapter
  • First Online:
  • 1445 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

Apoproteins are proteins that combine with non-protein groups referred to as prosthetic groups to form conjugated proteins. The apoproteins that have been mostly monitored using 2H3-leucine are those incorporated into lipoproteins. Specifically, these apoproteins are referred to as apolipoproteins distinguishing them from other apoproteins such as apoenzymes. Lipoproteins are molecular complexes of lipids and specific apoproteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bush TL, Fried LP, Barrett-Connor E. Cholesterol, lipoproteins, and coronary heart disease in women. Clin Chem. 1988;34:B60–70.

    CAS  PubMed  Google Scholar 

  2. Castelli WP, Garrison RJ, Wilson PW, et al. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 1986;256:2835–8.

    Article  CAS  PubMed  Google Scholar 

  3. Cohn JS, Wagner DA, Cohn SD, et al. Measurement of very low density and low density lipoprotein apolipoprotein (Apo) B-100 and high density lipoprotein Apo A-I production in human subjects using deuterated leucine. Effect of fasting and feeding. J Clin Invest. 1990;85:804–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ramakrishnan R. Studying apolipoprotein turnover with stable isotope tracers: correct analysis is by modeling enrichments. J Lipid Res. 2006;47:2738–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lichtenstein AH, Cohn JS, Hachey DL, et al. Comparison of deuterated leucine, valine, and lysine in the measurement of human apolipoprotein A-I and B-100 kinetics. J Lipid Res. 1990;31:1693–701.

    CAS  PubMed  Google Scholar 

  6. Patterson BW, Hachey DL, Cook GL, et al. Incorporation of a stable isotopically labeled amino acid into multiple human apolipoproteins. J Lipid Res. 1991;32:1063–72.

    CAS  PubMed  Google Scholar 

  7. Adiels M, Boren J, Caslake MJ, et al. Overproduction of VLDL1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol. 2005;25:1697–703.

    Article  CAS  PubMed  Google Scholar 

  8. Malmstrom R, Packard CJ, Caslake M, et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes. 1998;47:779–87.

    Article  CAS  PubMed  Google Scholar 

  9. Wolfe RR, Chinkes DL, editors. Isotope tracers in metabolic research. New Jersey, NJ: Wiley; 2005.

    Google Scholar 

  10. Patterson BW. Use of stable isotopically labeled tracers for studies of metabolic kinetics: an overview. Metabolism. 1997;46:322–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ouguerram K, Magot T, Zair Y, et al. Effect of atorvastatin on apolipoprotein B100 containing lipoprotein metabolism in type-2 diabetes. J Pharmacol Exp Ther. 2003;306:332–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ouguerram K, Maugeais C, Gardette J, et al. Effect of n-3 fatty acids on metabolism of apoB100-containing lipoprotein in type 2 diabetic subjects. Br J Nutr. 2006;96:100–6.

    Article  CAS  PubMed  Google Scholar 

  13. Halliday D, McKeran RO. Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of L-(alpha-15 N)lysine. Clin Sci Mol Med. 1975;49:581–90.

    CAS  PubMed  Google Scholar 

  14. Jahoor F, Burrin DG, Reeds PJ, et al. Measurement of plasma protein synthesis rate in infant pig: an investigation of alternative tracer approaches. Am J Physiol. 1994;267:R221–7.

    CAS  PubMed  Google Scholar 

  15. Reeds PJ, Hachey DL, Patterson BW, et al. VLDL apolipoprotein B-100, a potential indicator of the isotopic labeling of the hepatic protein synthetic precursor pool in humans: studies with multiple stable isotopically labeled amino acids. J Nutr. 1992;122:457–66.

    CAS  PubMed  Google Scholar 

  16. Jahoor F. The measurement of protein kinetics with stable isotopes tracers. In: Abrahms SA, Wong WW, editors. Stable isotopes in human nutrition laboratory methods and research applications. Cambridge, MA: CABI Publishing; 2003. p. 11–3.

    Chapter  Google Scholar 

  17. Baumann PQ, Stirewalt WS, O’Rourke BD, et al. Precursor pools of protein synthesis: a stable isotope study in a swine model. Am J Physiol. 1994;267:E203–9.

    CAS  PubMed  Google Scholar 

  18. Badaloo A, Reid M, Soares D, et al. Relation between liver fat content and the rate of VLDL apolipoprotein B-100 synthesis in children with protein-energy malnutrition. Am J Clin Nutr. 2005;81:1126–32.

    CAS  PubMed  Google Scholar 

  19. Badaloo AV, Forrester T, Reid M, et al. Nutritional repletion of children with severe acute malnutrition does not affect VLDL apolipoprotein B-100 synthesis rate. J Nutr. 2012;142:931–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Egusa G, Brady DW, Grundy SM, et al. Isopropanol precipitation method for the determination of apolipoprotein B specific activity and plasma concentrations during metabolic studies of very low density lipoprotein and low density lipoprotein apolipoprotein B. J Lipid Res. 1983;24:1261–7.

    CAS  PubMed  Google Scholar 

  21. Jahoor F, Wykes L, Del Rosario M, et al. Chronic protein undernutrition and an acute inflammatory stimulus elicit different protein kinetic responses in plasma but not in muscle of piglets. J Nutr. 1999;129:693–9.

    CAS  PubMed  Google Scholar 

  22. Puchois P, Kandoussi A, Fievet P, et al. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis. 1987;68:35–40.

    Article  CAS  PubMed  Google Scholar 

  23. Coste-Burel M, Mainard F, Chivot L, et al. Study of lipoprotein particles LpAI and LpAI:AII in patients before coronary bypass surgery. Clin Chem. 1990;36:1889–91.

    CAS  PubMed  Google Scholar 

  24. Genest Jr JJ, Bard JM, Fruchart JC, et al. Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis. 1991;90:149–57.

    Article  PubMed  Google Scholar 

  25. Li Z, McNamara JR, Fruchart JC, et al. Effects of gender and menopausal status on plasma lipoprotein subspecies and particle sizes. J Lipid Res. 1996;37:1886–96.

    CAS  PubMed  Google Scholar 

  26. Ohta T, Hattori S, Murakami M, et al. Age- and sex-related differences in lipoproteins containing apoprotein A-I. Arteriosclerosis. 1989;9:90–5.

    Article  CAS  PubMed  Google Scholar 

  27. Tilly-Kiesi M, Lichtenstein AH, Joven J, et al. Impact of gender on the metabolism of apolipoprotein A-I in HDL subclasses LpAI and LpAI:AII in older subjects. Arterioscler Thromb Vasc Biol. 1997;17:3513–8.

    Article  CAS  PubMed  Google Scholar 

  28. Frenais R, Ouguerram K, Maugeais C, et al. High density lipoprotein apolipoprotein AI kinetics in NIDDM: a stable isotope study. Diabetologia. 1997;40:578–83.

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Mendez O, Duhal N, Lacroix B, et al. Different VLDL apo B, and HDL apo AI and apo AII metabolism in two heterozygous carriers of unrelated mutations in the lipoprotein lipase gene. Clin Chim Acta. 2006;368:149–54.

    Article  CAS  PubMed  Google Scholar 

  30. Recalde D, Velez-Carrasco W, Civeira F, et al. Enhanced fractional catabolic rate of apo A-I and apo A-II in heterozygous subjects for apo A-I(Zaragoza) (L144R). Atherosclerosis. 2001;154:613–23.

    Article  CAS  PubMed  Google Scholar 

  31. Pietzsch J, Wiedemann B, Julius U, et al. Increased clearance of low density lipoprotein precursors in patients with heterozygous familial defective apolipoprotein B-100: a stable isotope approach. J Lipid Res. 1996;37:2074–87.

    CAS  PubMed  Google Scholar 

  32. Schaefer JR, Scharnagl H, Baumstark MW, et al. Homozygous familial defective apolipoprotein B-100. Enhanced removal of apolipoprotein E-containing VLDLs and decreased production of LDLs. Arterioscler Thromb Vasc Biol. 1997;17:348–53.

    Article  CAS  PubMed  Google Scholar 

  33. Friis-Moller N, Reiss P, Sabin CA, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356:1723–35.

    Article  PubMed  Google Scholar 

  34. Schmitz M, Michl GM, Walli R, et al. Alterations of apolipoprotein B metabolism in HIV-infected patients with antiretroviral combination therapy. J Acquir Immune Defic Syndr. 2001;26:225–35.

    Article  CAS  PubMed  Google Scholar 

  35. Ouguerram K, Zair Y, Billon S, et al. Disturbance of apolipoprotein B100 containing lipoprotein metabolism in severe hyperlipidemic and lipodystrophic HIV patients on combined antiretroviral therapy: evidences of insulin resistance effect. Med Chem. 2008;4:544–50.

    Article  CAS  PubMed  Google Scholar 

  36. McLean AE. Hepatic failure in malnutrition. Lancet. 1962;2:1292–4.

    Article  CAS  PubMed  Google Scholar 

  37. Waterlow JC. Protein energy malnutrition. Herts: Smith-Gordon and Compny Ltd.; 2006.

    Google Scholar 

  38. Waterlow JC. Amount and rate of disappearance of liver fat in malnourished infants in Jamaica. Am J Clin Nutr. 1975;28:1330–6.

    CAS  PubMed  Google Scholar 

  39. Coward WA, Whitehead RG. Changes in serum -lipoprotein concentration during the development of kwashiorkor and in recovery. Br J Nutr. 1972;27:383–94.

    Article  CAS  PubMed  Google Scholar 

  40. Flores H, Pak N, Maccioni A, et al. Lipid transport in kwashiorkor. Br J Nutr. 1970;24:1005–11.

    Article  CAS  PubMed  Google Scholar 

  41. Truswell AS, Hansen JD, Watson CE, et al. Relation of serum lipids and lipoproteins to fatty liver in kwashiorkor. Am J Clin Nutr. 1969;22:568–76.

    CAS  PubMed  Google Scholar 

  42. Agbedana EO, Johnson AO, Taylor GO. Selective deficiency of hepatic triglyceride lipase and hypertriglyceridaemia in kwashiorkor. Br J Nutr. 1979;42:351–6.

    Article  CAS  PubMed  Google Scholar 

  43. Dhansay MA, Benade AJ, Donald PR. Plasma lecithin-cholesterol acyltransferase activity and plasma lipoprotein composition and concentrations in kwashiorkor. Am J Clin Nutr. 1991;53:512–9.

    CAS  PubMed  Google Scholar 

  44. Seakins A, Waterlow JC. Effect of a low-protein diet on the incorporation of amino acids into rat serum lipoproteins. Biochem J. 1972;129:793–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Flores H, Sierralta W, Monckeberg F. Triglyceride transport in protein-depleted rats. J Nutr. 1970;100:375–9.

    CAS  PubMed  Google Scholar 

  46. Ricci C, Longo R, Gioulis E, et al. Noninvasive in vivo quantitative assessment of fat content in human liver. J Hepatol. 1997;27:108–13.

    Article  CAS  PubMed  Google Scholar 

  47. Badaloo AV, Forrester T, Reid M, et al. Lipid kinetic differences between children with kwashiorkor and those with marasmus. Am J Clin Nutr. 2006;83:1283–8.

    CAS  PubMed  Google Scholar 

  48. Doherty JF, Golden MH, Brooks SE. Peroxisomes and the fatty liver of malnutrition: an hypothesis. Am J Clin Nutr. 1991;54:674–7.

    CAS  PubMed  Google Scholar 

  49. Champe PC, Harvey RA. Biochemistry. Philadelphia: Lippincott Williams & Wilkins; 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha V. Badaloo B.Sc., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Badaloo, A.V., Reid, M., Jahoor, F. (2015). Use of 2H3-Leucine to Monitor Apoproteins. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1923-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1923-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1922-2

  • Online ISBN: 978-1-4939-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics