Skip to main content

Cloud Networking to Support Data Intensive Applications

  • Chapter
  • First Online:
Book cover Cloud Computing for Data-Intensive Applications

Abstract

Cloud computing requires a complex networking subsystem in order to offer on-demand access to a pool of computing resources. Communication among resources (physical or virtual servers, storage, network, instruments, services, and applications) needs to be dynamically adapted to constantly changing cloud environments. This chapter looks into the available network infrastructure and technologies, the use of public and private networks in clouds, methods to simplify management of those networks to support data intensive applications, and employment of such methods in practical use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE, “IEEE Std 802.3, 1998 Edition”, 1998

    Google Scholar 

  2. IEEE, “IEEE Std 802.3, 2005 Edition”, 2005

    Google Scholar 

  3. InfiniBand Trade Association, [Online], Available: http://www.infinibandta.org

  4. Fibre Channel Industry Association, [Online], Available: http://www.fibrechannel.org

  5. J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. “Internet Small Computer Systems Interface (iSCSI)”, RFC3720, April 2004

    Google Scholar 

  6. ANSI, “Information Technology - Fibre Channel - Backbone - 5 (FC-BB-5)”, May 2010

    Google Scholar 

  7. M. Chadalapaka, H. Shah, U. Elzur, P. Thaler, and M. Ko, “A study of iSCSI extensions for RDMA (iSER)”, In Proceedings of the ACM SIGCOMM workshop on Network-I/O convergence: experience, lessons, implications (NICELI ’03). ACM, New York, NY, USA, pp. 209–219, 2003

    Google Scholar 

  8. J. D. Day and H. Zimmermann. The OSI reference model. Proceedings of the IEEE, 71(12):1334–1340, December 1983

    Google Scholar 

  9. W. Simpson, “IP in IP Tunneling,” IETF RFC 1853, Oct. 1995

    Google Scholar 

  10. D. Farinacci, T. Li, S. Hanks et al., “Generic Routing Encapsulation (GRE),” IETF RFC 2784, Mar. 2000

    Google Scholar 

  11. IEEE, “IEEE Std 802.1Q-2005”, 2006

    Google Scholar 

  12. B. Gleeson, A. Lin, J. Heinanenet al., “A Framework for IP Based Virtual Private Networks,” IETF RFC 2764, Feb. 2000

    Google Scholar 

  13. L. Xia, Z. Cui, J. R. Lange, Y. Tang, P. A. Dinda, and P. G. Bridges., “VNET/P: bridging the cloud and high performance computing through fast overlay networking”, In Proceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing (HPDC ’12), ACM, New York, NY, USA, pp. 259–270, 2012

    Google Scholar 

  14. P. Ruth, X. Jiang, D. Xu et al., “Virtual distributed environments in a shared infrastructure,” IEEE Computer, vol. 38, no. 5, pp. 63–69, 2005

    Article  Google Scholar 

  15. M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell, M. Wray, T. Christian, N. Edwards, C. I. Dalton, F. Gittler, “SoftUDC: A Software-Based Data Center for Utility Computing”, Computer, v. 37 n. 11, p. 38–46, November 2004

    Google Scholar 

  16. M. Tsugawa and J. A. B. Fortes, “A virtual network (ViNe) architecture for grid computing”, Proceedings of the 20th international conference on Parallel and distributed processing, p. 148–148, April 25–29, 2006, Rhodes Island, Greece

    Google Scholar 

  17. M. Tsugawa, A. Matsunaga, and J. A. B. Fortes, “User-level virtual network support for sky computing”, In Procs. 5th IEEE e-Science, pages 72–79, 2009

    Google Scholar 

  18. A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “IP over P2P: enabling self-configuring virtual IP networks for grid computing”, Proceedings of the 20th international conference on Parallel and distributed processing, p. 49–49, April 25–29, 2006, Rhodes Island, Greece

    Google Scholar 

  19. D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and K. Wehrle, “OCALA: an architecture for supporting legacy applications over overlays”, Proceedings of the 3rd conference on Networked Systems Design & Implementation, p. 20–20, May 08–10, 2006, San Jose, CA

    Google Scholar 

  20. H. Fang, T. V. Lakshman, M. Sarit et al., “Enhancing dynamic cloud-based services using network virtualization,” SIGCOMM Compute. Commun. Rev., vol. 40, no. 1, pp. 67–74, 2010

    Article  MATH  Google Scholar 

  21. E. Silvera, G. Sharaby, D. Lorenz et al., “IP mobility to support live migration of virtual machines across subnets,” in Proc SYSTOR 2009: The Israeli Experimental Systems Conference, Haifa, Israel, 2009

    Google Scholar 

  22. H. Watanabe, T. Ohigashi, T. Kondo et al., “A Performance Improvement Method for the Global Live Migration of Virtual Machine with IP Mobility,” in Proc. 5th Int. Conf. on Mobile Computing and Ubiquitous Networking, Seattle, 2010, pp. 194–199

    Google Scholar 

  23. Q. Li, J. Huai, J. Li et al., “HyperMIP: Hypervisor Controlled Mobile IP for Virtual Machine Live Migration across Networks,” in Proc. 11th IEEE High Assurance Systems Engineering Symp., 2008, pp. 80–88

    Google Scholar 

  24. V. Manetti, R. Canonico, G. Ventre et al., “System-Level Virtualization and Mobile IP to Support Service Mobility,” in Proc. Int. Conf. on Parallel Processing Workshops, 2009, pp. 243–248

    Google Scholar 

  25. M. Tsugawa, P. Riteau, A. Matsunaga, and J. Fortes, “User-level virtual networking mechanisms to support virtual machine migration over multiple clouds,” In IEEE Intl Workshop on Management of Emerging Networks and Services, Miami, Florida, 2010, pp. 588–592

    Google Scholar 

  26. Internet2 Network, [Online], Available: http://www.internet2.edu/network

  27. Energy Sciences Network, [Online], Available: http://www.es.net

  28. geni - Exploring Networks of the Future, [Online], Available: http://www.geni.net

  29. FutureGrid Project, [Online], Available: http://www.futuregrid.org

  30. Internet Engineering Task Force, [Online], Available: http://www.ietf.org

  31. Open Networking Foundation, [Online], Available: http://www.opennetworking.org

  32. N. McKewon, T. Anderson, H. Balakrishnan, et al., “OpenFlow: Enabling Innovation in Campus Networks,” White Paper, March 2008

    Google Scholar 

  33. OpenFlow, [Online], Available: http://www.openflow.org

  34. Amazon Elastic Compute Cloud, [Online], Available: http://aws.amazon.com/ec2

  35. G. Wang and T. S. E. Ng, “The Impact of Virtualization on Network Performance of Amazon EC2 Data Center”, in Proceedings of IEEE INFOCOM 2010, San Diego, CA, March 2010

    Google Scholar 

  36. Serhiy Topchiy, “Testing Amazon EC2 Network Speed”, [Online], Available: http://epamcloud.blogspot.com/2013/03/testing-amazon-ec2-network-speed.html

  37. Steve Morad, “Amazon Virtual Private Cloud Connectivity Options”, White Paper, October 2012

    Google Scholar 

  38. Amazon AWS, “Extend Your IT Infrastructure with Amazon Virtual Private Cloud”, White Paper, January 2010

    Google Scholar 

  39. Windows Azure, [Online], Available: http://www.windowsazure.com

  40. OpenStack Cloud Software, [Online], Available: http://www.openstack.org

  41. Apache CloudStack, [Online], Available: http://www.cloudstack.apache.org

  42. Apache Software Foundation, [Online], Available: http://apache.org

  43. OpenStack Foundation, “OpenStack Networking Administration Guide”, 2013

    Google Scholar 

  44. Apache CloudStack, “CloudStack Administrator’s Guide”, 2013

    Google Scholar 

  45. Nicira, “It’s Time to Virtualize the Network - Network Virtualization for Cloud Data Centers”, White Paper, 2012

    Google Scholar 

  46. CohesiveFT, “Cloud Security Best Practices. Part I: Using VNS3 Overlay Network with Private, Public, and Hybrid Clouds”, Technical White Paper, 2013

    Google Scholar 

  47. Timothy P. Morgan, “Pertino uncloaks, fires ‘cloud network engine’ at Cisco”, The Register, February 2013

    Google Scholar 

  48. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data center network”, In Proceedings of the ACM SIGCOMM 2009 conference on Data communication (SIGCOMM ’09). ACM, New York, NY, USA, pp. 51–62, 2009

    Google Scholar 

  49. T. S. Kang, M. Tsugawa, T. Hirofuchi, J. Fortes, “Reducing the Migration Times of Multiple VMs on WANs using a Feedback Controller”, The 18th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems, 2013

    Google Scholar 

  50. E. Walker, “Benchmarking Amazon EC2 for high-performance scientific computing”, Usenix Login, 2008, v. 33(5), pp. 18–23

    Google Scholar 

  51. P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, S. Saini, and R. Biswas, “Performance evaluation of Amazon Elastic Compute Cloud for NASA high-performance computing applications,” Concurrency Computat.: Pract. Exper.. 2013. doi: 10.1002/cpe.3029

    Google Scholar 

  52. S. Panitkin, and A. Hanushevsky, “ATLAS Experiment and GCE”, Google IO Conference, May 15–17, 2013. http://www.youtube.com/watch?v=LRkLQw5rLy8

  53. A. Matsunaga, M. Tsugawa, and J. Fortes, “CloudBLAST: Combining MapReduce and Virtualization on Distributed Resources for Bioinformatics Applications”, IEEE eScience 2008, pp. 229, 222, 2008

    Google Scholar 

  54. K. Keahey, M. Tsugawa, A. Matsunaga, J.A.B. Fortes, “Sky Computing.” Internet Computing, IEEE, vol. 13, no. 5, p. 43–51, Sept.-Oct. 2009

    Google Scholar 

  55. A. Matsunaga, P. Riteau, M. Tsugawa, J.A.B. Fortes, “Crosscloud Computing,” Advances in Parallel Computing, High Performance Computing: From Grids and Clouds to Exascale, volume 20, 2011, pp. 109–123

    Google Scholar 

  56. Apache Hadoop project. http://hadoop.apache.org

  57. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman., “Basic Local Alignment Search Tool”, Journal of Molecular Biology, 1990, v. 215(3), pp. 403–410

    Google Scholar 

  58. Akamai, “The State of Internet Report”, Fourth Quarter, 2012

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Science Foundation (NSF) grants No. 0910812, 1234983, 1240171, and the AT&T Foundation. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF, and AT&T Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício Tsugawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsugawa, M., Matsunaga, A., Fortes, J.A.B. (2014). Cloud Networking to Support Data Intensive Applications. In: Li, X., Qiu, J. (eds) Cloud Computing for Data-Intensive Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1905-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1905-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1904-8

  • Online ISBN: 978-1-4939-1905-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics