New Imaging Techniques in the Staging of Urothelial Carcinoma of the Bladder

  • Ramdev Konijeti
  • Adam S. KibelEmail author


The surgical treatment of bladder cancer ranges from simple transurethral resection to radical cystectomy with or without perioperative chemotherapy. As such, staging is a key driver of therapy. While conventional imaging techniques clearly play a central role in the assessment of bladder cancer, assessment of disease extent could be improved. As such, multiple new imaging modalities have sought to improve staging and in doing so improve cure rates. The focus of this chapter will be to highlight the current state-of-the-art with respect to use of newer magnetic resonance (e.g. diffusion-weighted MRI (DW MRI), dynamic contrast-enhanced MRI (DCE MRI), MRI lymphography) and positron emission tomography (PET) techniques to improve assessment of local and metastatic disease.


Urothelial carcinoma of the bladder Staging Imaging Computerized tomography Magnetic resonance imaging Positron emission tomography Lymphography 


  1. 1.
    Baltaci S, et al. Computerized tomography for detecting perivesical infiltration and lymph node metastasis in invasive bladder carcinoma. Urol Int. 2008;81(4):399–402.PubMedCrossRefGoogle Scholar
  2. 2.
    Caterino M, et al. Primary cancer of the urinary bladder: CT evaluation of the T parameter with different techniques. Abdom Imaging. 2001;26(4):433–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Cowan NC, Crew JP. Imaging bladder cancer. Curr Opin Urol. 2010;20(5):409–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Kundra V, Silverman PM. Imaging in oncology from the University of Texas M. D. Anderson Cancer Center. Imaging in the diagnosis, staging, and follow-up of cancer of the urinary bladder. AJR Am J Roentgenol. 2003;180(4):1045–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Paik ML, et al. Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol. 2000;163(6):1693–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Voges GE, et al. Computerized tomography: an unreliable method for accurate staging of bladder tumors in patients who are candidates for radical cystectomy. J Urol. 1989;142(4):972–4.PubMedGoogle Scholar
  7. 7.
    Yaman O, et al. Staging with computed tomography, transrectal ultrasonography and transurethral resection of bladder tumour: comparison with final pathological stage in invasive bladder carcinoma. Br J Urol. 1996;78(2):197–200.PubMedCrossRefGoogle Scholar
  8. 8.
    Herr HW, Donat SM, Dalbagni G. Can restaging transurethral resection of T1 bladder cancer select patients for immediate cystectomy? J Urol. 2007;177(1):75–9. discussion 79.PubMedCrossRefGoogle Scholar
  9. 9.
    Dutta SC, et al. Clinical under staging of high risk nonmuscle invasive urothelial carcinoma treated with radical cystectomy. J Urol. 2001;166(2):490–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Stein JP, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol. 2001;19(3):666–75.PubMedGoogle Scholar
  11. 11.
    Grossman HB, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Moses KA, et al. Bladder cancer imaging: an update. Curr Opin Urol. 2011;21(5):393–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Silverman SG, Leyendecker JR, Amis Jr ES. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology. 2009;250(2):309–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Matsuki M, et al. Diffusion-weighted MR imaging for urinary bladder carcinoma: initial results. Eur Radiol. 2007;17(1):201–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Abou-El-Ghar ME, et al. Bladder cancer: diagnosis with diffusion-weighted MR imaging in patients with gross hematuria. Radiology. 2009;251(2):415–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Avcu S, et al. The value of diffusion-weighted MRI in the diagnosis of malignant and benign urinary bladder lesions. Br J Radiol. 2011;84(1006):875–82.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Watanabe H, et al. Preoperative T staging of urinary bladder cancer: does diffusion-weighted MRI have supplementary value? AJR Am J Roentgenol. 2009;192(5):1361–6.PubMedCrossRefGoogle Scholar
  18. 18.
    El-Assmy A, et al. Bladder tumour staging: comparison of diffusion- and T2-weighted MR imaging. Eur Radiol. 2009;19(7):1575–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Takeuchi M, et al. Urinary bladder cancer: diffusion-weighted MR imaging–accuracy for diagnosing T stage and estimating histologic grade. Radiology. 2009;251(1):112–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Bouchelouche KB, Turkbey, Choyke PL. PET/CT and MRI in bladder cancer. J Cancer Sci Ther 2012;S14(1).Google Scholar
  21. 21.
    Tuncbilek N, et al. Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer. AJR Am J Roentgenol. 2009;192(4):949–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Barentsz JO, et al. Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging. Radiology. 1996;201(1):185–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Scattoni V, et al. Dynamic gadolinium-enhanced magnetic resonance imaging in staging of superficial bladder cancer. J Urol. 1996;155(5):1594–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Ak I, Stokkel MP, Pauwels EK. Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose in oncology. Part II. The clinical value in detecting and staging primary tumours. J Cancer Res Clin Oncol. 2000;126(10):560–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Jana S, Blaufox MD. Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med. 2006;36(1):51–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Leskinen-Kallio S, et al. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med. 1991;32(6):1211–8.PubMedGoogle Scholar
  27. 27.
    Anjos DA, et al. 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med. 2007;48(5):764–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Kibel AS, et al. Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol. 2009;27(26):4314–20.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lodde M, et al. Evaluation of fluorodeoxyglucose positron-emission tomography with computed tomography for staging of urothelial carcinoma. BJU Int. 2010;106(5):658–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Gofrit ON, et al. Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol. 2006;176(3):940–4. discussion 944.PubMedCrossRefGoogle Scholar
  31. 31.
    Picchio M, et al. Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med. 2006;47(6):938–44.PubMedGoogle Scholar
  32. 32.
    Ahlstrom H, et al. Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol. 1996;37(2):180–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Vargas HA, et al. Prospective evaluation of MRI, (1)(1)C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radiol. 2012;81(12):4131–7.PubMedCrossRefGoogle Scholar
  34. 34.
    National Comprehensive Cancer Network. NCCN Guidelines Version 1. 2013 bladder cancer. 2013 [cited 2013 September 3]; Available from:
  35. 35.
    Abbosh P, et al. Evaluation of alkaline phosphatase as a marker for bone metastasis in patients with muscle-invasive bladder cancer. J Urol. 2013;189(4 Suppl):e770.CrossRefGoogle Scholar
  36. 36.
    Millikan R, et al. Integrated therapy for locally advanced bladder cancer: final report of a randomized trial of cystectomy plus adjuvant M-VAC versus cystectomy with both preoperative and postoperative M-VAC. J Clin Oncol. 2001;19(20):4005–13.PubMedGoogle Scholar
  37. 37.
    Bellin MF, Roy C. Magnetic resonance lymphography. Curr Opin Urol. 2007;17(1):65–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Bellin MF, et al. Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles–initial clinical experience. Radiology. 1998;207(3):799–808.PubMedCrossRefGoogle Scholar
  39. 39.
    Deserno WM, et al. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology. 2004;233(2):449–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Thoeny HC, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol. 2009;55(4):761–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Drieskens O, et al. FDG-PET for preoperative staging of bladder cancer. Eur J Nucl Med Mol Imaging. 2005;32(12):1412–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Apolo AB, et al. Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J Clin Oncol. 2010;28(25):3973–8.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Abbosh P, et al. Utility of FDG-PET/CT in identifying bone metastasis in patients with bladder cancer. J Urol. 2013;189(4 Suppl):e903.CrossRefGoogle Scholar
  44. 44.
    Maurer T, et al. Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol. 2012;61(5):1031–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Golan S, et al. Comparison of 11C-choline with 18F-FDG in positron emission tomography/computerized tomography for staging urothelial carcinoma: a prospective study. J Urol. 2011;186(2):436–41.PubMedCrossRefGoogle Scholar
  46. 46.
    Letocha H, et al. Positron emission tomography with L-methyl-11C-methionine in the monitoring of therapy response in muscle-invasive transitional cell carcinoma of the urinary bladder. Br J Urol. 1994;74(6):767–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Schoder H, et al. Initial results with (11)C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol. 2012;14(2):245–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Urology, Department of Surgery, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations