Improved Diagnostic Techniques

  • Seth P. LernerEmail author
  • Alvin C. Goh


Advances in technology may help to improve bladder cancer diagnosis, staging, and treatment. Biomarkers have been used to aid in diagnosis and surveillance of patients with bladder cancer. Standard tools for diagnosis and staging incorporate the use of urine cytology and computer tomography to examine the upper tracts. Several urinary tumor markers may assist to identify and risk-stratify the probability of current and future (anticipatory) risk of bladder cancer. Fluorescence cystoscopy, utilizing 5-ALA and hexaminolevulinate (HAL) as photosensitizing agents, has been shown to improve the detection of papillary and flat bladder lesions, compared to conventional white light cystoscopy. Prospective phase III clinical trials have demonstrated improved diagnostic ability, enhanced tumor resection, and reduced tumor recurrence. Optical coherence tomography is an emerging technology that shows promise in revealing subsurface microarchitecture information about bladder lesions in real-time, potentially leading to more accurate staging. Narrow-band imaging may augment standard endoscopic tools by providing increased contrast between normal and abnormal tissue on the basis of neovascularity. Confocal laser endoscopy has the potential to provide images of even higher resolution. We present an overview of urine biomarkers and the strengths and weaknesses of these imaging modalities and examine their potential impact on the diagnosis and management of bladder cancer.


(5–10) Bladder cancer Cytology Biomarkers Fluorescence 5-Aminolevulinic acid Optical coherence tomography Narrow-band imaging Virtual cystoscopy 


  1. 1.
    Riley GF, Potosky AL, Lubitz JD, Kessler LG. Medicare payments from diagnosis to death for elderly cancer patients by stage at diagnosis. Med Care. 1995;33(8):828–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics. 2003;21(18):1315–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Herr HW. Natural history of superficial bladder tumors: 10- to 20-year follow-up of treated patients. World J Urol. 1997;15(2):84–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Holmang S, Hedelin H, Anderstrom C, Holmberg E, Busch C, Johansson SL. Recurrence and progression in low grade papillary urothelial tumors. J Urol. 1999;162(3 Pt 1):702–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Brausi M, Collette L, Kurth K, van der Meijden AP, Oosterlinck W, Witjes JA, et al. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol. 2002;41(5):523–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Halling KC, King W, Sokolova IA, Meyer RG, Burkhardt HM, Halling AC, et al. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J Urol. 2000;164(5):1768–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Todenhofer T, Hennenlotter J, Esser M, Mohrhardt S, Tews V, Aufderklamm S, et al. Combined application of cytology and molecular urine markers to improve the detection of urothelial carcinoma. Cancer Cytopathol. 2013;121(5):252–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Lokeshwar VB, Habuchi T, Grossman HB, Murphy WM, Hautmann SH, Hemstreet 3rd GP, et al. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology. 2005;66(6 Suppl 1):35–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Zippe C, Pandrangi L, Agarwal A. NMP22 is a sensitive, cost-effective test in patients at risk for bladder cancer. J Urol. 1999;161(1):62–5. Epub. 1999/02/26.PubMedCrossRefGoogle Scholar
  11. 11.
    Grossman HB, Messing E, Soloway M, Tomera K, Katz G, Berger Y, et al. Detection of bladder cancer using a point-of-care proteomic assay. JAMA. 2005;293(7):810–6. Epub 2005/02/17.PubMedCrossRefGoogle Scholar
  12. 12.
    Giannopoulos A, Manousakas T, Gounari A, Constantinides C, Choremi-Papadopoulou H, Dimopoulos C. Comparative evaluation of the diagnostic performance of the BTA stat test, NMP22 and urinary bladder cancer antigen for primary and recurrent bladder tumors. J Urol. 2001;166(2):470–5. Epub 2001/07/18.PubMedCrossRefGoogle Scholar
  13. 13.
    Toma MI, Friedrich MG, Hautmann SH, Jakel KT, Erbersdobler A, Hellstern A, et al. Comparison of the ImmunoCyt test and urinary cytology with other urine tests in the detection and surveillance of bladder cancer. World J Urol. 2004;22(2):145–9. Epub 2004/03/03.PubMedCrossRefGoogle Scholar
  14. 14.
    Comploj E, Mian C, Ambrosini-Spaltro A, Dechet C, Palermo S, Trenti E, et al. uCyt+/ImmunoCyt and cytology in the detection of urothelial carcinoma: an update on 7422 analyses. Cancer Cytopathol. 2013;121(7):392–7. Epub. 2013/03/16.PubMedCrossRefGoogle Scholar
  15. 15.
    Bonberg N, Taeger D, Gawrych K, Johnen G, Banek S, Schwentner C, et al. Chromosomal instability and bladder cancer: the UroVysion(TM) test in the UroScreen study. BJU Int. 2013;112(4):E372–82. Epub 2013/01/29.PubMedCrossRefGoogle Scholar
  16. 16.
    Ponsky LE, Sharma S, Pandrangi L, Kedia S, Nelson D, Agarwal A, et al. Screening and monitoring for bladder cancer: refining the use of NMP22. J Urol. 2001;166(1):75–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Liou LS. Urothelial cancer biomarkers for detection and surveillance. Urology. 2006;67(3 Suppl 1):25–33. discussion −4.PubMedCrossRefGoogle Scholar
  18. 18.
    Grossman HB, Gomella L, Fradet Y, Morales A, Presti J, Ritenour C, et al. A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. J Urol. 2007;178(1):62–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Lau P, Chin JL, Pautler S, Razvi H, Izawa JI. NMP22 is predictive of recurrence in high-risk superficial bladder cancer patients. Can Urol Assoc J. 2009;3(6):454–8.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Shariat SF, Savage C, Chromecki TF, Sun M, Scherr DS, Lee RK, et al. Assessing the clinical benefit of nuclear matrix protein 22 in the surveillance of patients with nonmuscle-invasive bladder cancer and negative cytology: a decision-curve analysis. Cancer. 2011;117(13):2892–7.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Glas AS, Roos D, Deutekom M, Zwinderman AH, Bossuyt PM, Kurth KH. Tumor markers in the diagnosis of primary bladder cancer. A systematic review. J Urol. 2003;169(6):1975–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Mowatt G, Zhu S, Kilonzo M, Boachie C, Fraser C, Griffiths TR, et al. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess. 2010;14(4):1–331. iii–iv.CrossRefGoogle Scholar
  23. 23.
    Lodde M, Mian C, Negri G, Vittadello F, Comploj E, Palermo S, et al. Effect of intravesical instillation on performance of uCYT + test. Urology. 2004;63(5):878–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Piaton E, Daniel L, Verriele V, Dalifard I, Zimmermann U, Renaudin K, et al. Improved detection of urothelial carcinomas with fluorescence immunocytochemistry (uCyt + assay) and urinary cytology: results of a French Prospective Multicenter Study. Lab Invest. 2003;83(6):845–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Huysentruyt CJ, Baldewijns MM, Ruland AM, Tonk RJ, Vervoort PS, Smits KM, et al. Modified UroVysion scoring criteria increase the urothelial carcinoma detection rate in cases of equivocal urinary cytology. Histopathology. 2011;58(7):1048–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Hajdinjak T. UroVysion FISH test for detecting urothelial cancers: meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urol Oncol. 2008;26(6):646–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoder BJ, Skacel M, Hedgepeth R, Babineau D, Ulchaker JC, Liou LS, et al. Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings. Am J Clin Pathol. 2007;127(2):295–301.PubMedCrossRefGoogle Scholar
  28. 28.
    Kamat AM, Dickstein RJ, Messetti F, Anderson R, Pretzsch SM, Gonzalez GN, et al. Use of fluorescence in situ hybridization to predict response to bacillus Calmette-Guerin therapy for bladder cancer: results of a prospective trial. J Urol. 2012;187(3):862–7.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Schlomer BJ, Ho R, Sagalowsky A, Ashfaq R, Lotan Y. Prospective validation of the clinical usefulness of reflex fluorescence in situ hybridization assay in patients with atypical cytology for the detection of urothelial carcinoma of the bladder. J Urol. 2010;183(1):62–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Mian C, Mazzoleni G, Vikoler S, Martini T, Knuchel-Clark R, Zaak D, et al. Fluorescence in situ hybridisation in the diagnosis of upper urinary tract tumours. Eur Urol. 2010;58(2):288–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Quayle SS, Ames CD, Lieber D, Yan Y, Landman J. Comparison of optical resolution with digital and standard fiberoptic cystoscopes in an in vitro model. Urology. 2005;66(3):489–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Cina SJ, Epstein JI, Endrizzi JM, Harmon WJ, Seay TM, Schoenberg MP. Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Hum Pathol. 2001;32(6):630–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Rink M, Babjuk M, Catto JW, Jichlinski P, Shariat SF, Stenzl A, et al. Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol. 2013;64(4):624–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Soloway MS, Murphy W, Rao MK, Cox C. Serial multiple-site biopsies in patients with bladder cancer. J Urol. 1978;120(1):57–9.PubMedGoogle Scholar
  35. 35.
    Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, Palou J, Vicente-Rodriguez J. Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J Urol. 2000;163(1):73–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Klan R, Loy V, Huland H. Residual tumor discovered in routine second transurethral resection in patients with stage T1 transitional cell carcinoma of the bladder. J Urol. 1991;146(2):316–8.PubMedGoogle Scholar
  37. 37.
    Schwaibold HE, Sivalingam S, May F, Hartung R. The value of a second transurethral resection for T1 bladder cancer. BJU Int. 2006;97(6):1199–201.PubMedCrossRefGoogle Scholar
  38. 38.
    Brauers A, Buettner R, Jakse G. Second resection and prognosis of primary high risk superficial bladder cancer: is cystectomy often too early? J Urol. 2001;165(3):808–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Shariat SF, Palapattu GS, Karakiewicz PI, Rogers CG, Vazina A, Bastian PJ, et al. Discrepancy between clinical and pathologic stage: impact on prognosis after radical cystectomy. Eur Urol. 2007;51(1):137–49. discussion 49–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Cauberg Evelyne CC, de la Rosette JJ, de Reijke TM. Emerging optical techniques in advanced cystoscopy for bladder cancer diagnosis: a review of the current literature. Indian J Urol. 2011;27(2):245–51.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Goh AC, Lerner SP. Application of new technology in bladder cancer diagnosis and treatment. World J Urol. 2009;27(3):301–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu JJ, Droller MJ, Liao JC. New optical imaging technologies for bladder cancer: considerations and perspectives. J Urol. 2012;188(2):361–8.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990;6(1–2):143–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Batlle AM. Porphyrins, porphyrias, cancer and photodynamic therapy–a model for carcinogenesis. J Photochem Photobiol B. 1993;20(1):5–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Babjuk M, Burger M, Zigeuner R, Shariat SF, van Rhijn BW, Comperat E, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol. 2013;64(4):639–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Stenzl A, Burger M, Fradet Y, Mynderse LA, Soloway MS, Witjes JA, et al. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol. 2010;184(5):1907–13.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Burger M, Grossman HB, Droller M, Schmidbauer J, Hermann G, Dragoescu O, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64(5):846–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Jocham D, Witjes F, Wagner S, Zeylemaker B, van Moorselaar J, Grimm MO, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol. 2005;174(3):862–6. discussion 6.PubMedCrossRefGoogle Scholar
  49. 49.
    Schmidbauer J, Witjes F, Schmeller N, Donat R, Susani M, Marberger M. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy. J Urol. 2004;171(1):135–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Fradet Y, Grossman HB, Gomella L, Lerner S, Cookson M, Albala D, et al. A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study. J Urol. 2007;178(1):68–73. Discussion.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu H, Wu M, Thomas YK, Lerner SP. Fluorescence and white light cystoscopy for detecting carcinoma in situ of the bladder. J Urol. 2008;179(4):326.CrossRefGoogle Scholar
  52. 52.
    Burger M, Stief CG, Zaak D, Stenzl A, Wieland WF, Jocham D, et al. Hexaminolevulinate is equal to 5-aminolevulinic acid concerning residual tumor and recurrence rate following photodynamic diagnostic assisted transurethral resection of bladder tumors. Urology. 2009;74(6):1282–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Daniltchenko DI, Riedl CR, Sachs MD, Koenig F, Daha KL, Pflueger H, et al. Long-term benefit of 5-aminolevulinic acid fluorescence assisted transurethral resection of superficial bladder cancer: 5-year results of a prospective randomized study. J Urol. 2005;174(6):2129–33. discussion 33.PubMedCrossRefGoogle Scholar
  54. 54.
    Denzinger S, Burger M, Walter B, Knuechel R, Roessler W, Wieland WF, et al. Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study. Urology. 2007;69(4):675–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Steinbach P, Weingandt H, Baumgartner R, Kriegmair M, Hofstadter F, Knuchel R. Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol. 1995;62(5):887–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Babjuk M, Soukup V, Petrik R, Jirsa M, Dvoracek J. 5-aminolaevulinic acid-induced fluorescence cystoscopy during transurethral resection reduces the risk of recurrence in stage Ta/T1 bladder cancer. BJU Int. 2005;96(6):798–802.PubMedCrossRefGoogle Scholar
  57. 57.
    Filbeck T, Pichlmeier U, Knuechel R, Wieland WF, Roessler W. Clinically relevant improvement of recurrence-free survival with 5-aminolevulinic acid induced fluorescence diagnosis in patients with superficial bladder tumors. J Urol. 2002;168(1):67–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Geavlete B, Multescu R, Georgescu D, Jecu M, Stanescu F, Geavlete P. Treatment changes and long-term recurrence rates after hexaminolevulinate (HAL) fluorescence cystoscopy: does it really make a difference in patients with non-muscle-invasive bladder cancer (NMIBC)? BJU Int. 2012;109(4):549–56.PubMedCrossRefGoogle Scholar
  59. 59.
    Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, et al. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol. 2012;188(1):58–62.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Hermann GG, Mogensen K, Carlsson S, Marcussen N, Duun S. Fluorescence-guided transurethral resection of bladder tumours reduces bladder tumour recurrence due to less residual tumour tissue in Ta/T1 patients: a randomized two-centre study. BJU Int. 2011;108(8 Pt 2):E297–303.PubMedCrossRefGoogle Scholar
  61. 61.
    Schumacher MC, Holmang S, Davidsson T, Friedrich B, Pedersen J, Wiklund NP. Transurethral resection of non-muscle-invasive bladder transitional cell cancers with or without 5-aminolevulinic Acid under visible and fluorescent light: results of a prospective, randomised, multicentre study. Eur Urol. 2010;57(2): 293–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Stenzl A, Penkoff H, Dajc-Sommerer E, Zumbraegel A, Hoeltl L, Scholz M, et al. Detection and clinical outcome of urinary bladder cancer with 5-aminolevulinic acid-induced fluorescence cystoscopy: a multicenter randomized, double-blind, placebo-controlled trial. Cancer. 2011;117(5):938–47.PubMedCrossRefGoogle Scholar
  63. 63.
    Avritscher EB, Cooksley CD, Grossman HB, Sabichi AL, Hamblin L, Dinney CP, et al. Clinical model of lifetime cost of treating bladder cancer and associated complications. Urology. 2006;68(3):549–53.PubMedCrossRefGoogle Scholar
  64. 64.
    Konety BR, Joyce GF, Wise M. Bladder and upper tract urothelial cancer. J Urol. 2007;177(5):1636–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Sievert KD, Amend B, Nagele U, Schilling D, Bedke J, Horstmann M, et al. Economic aspects of bladder cancer: what are the benefits and costs? World J Urol. 2009;27(3):295–300.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Burger M, Zaak D, Stief CG, Filbeck T, Wieland WF, Roessler W, et al. Photodynamic diagnostics and noninvasive bladder cancer: is it cost-effective in long-term application? A Germany-based cost analysis. Eur Urol. 2007;52(1):142–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Garfield SS, Gavaghan MB, Armstrong SO, Jones JS. The cost-effectiveness of blue light cystoscopy in bladder cancer detection: United States projections based on clinical data showing 4.5 years of follow up after a single hexaminolevulinate hydrochloride instillation. Can J Urol. 2013;20(2):6682–9.PubMedGoogle Scholar
  68. 68.
    D'Hallewin MA, Kamuhabwa AR, Roskams T, De Witte PA, Baert L. Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU Int. 2002;89(7):760–3.PubMedCrossRefGoogle Scholar
  69. 69.
    Kubin A, Meissner P, Wierrani F, Burner U, Bodenteich A, Pytel A, et al. Fluorescence diagnosis of bladder cancer with new water soluble hypericin bound to polyvinylpyrrolidone: PVP-hypericin. Photochem Photobiol. 2008;84(6):1560–3.PubMedCrossRefGoogle Scholar
  70. 70.
    Sim HG, Lau WK, Olivo M, Tan PH, Cheng CW. Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinoma? BJU Int. 2005;95(9):1215–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Vandepitte J, Van Cleynenbreugel B, Hettinger K, Van Poppel H, de Witte PA. Biodistribution of PVP-hypericin and hexaminolevulinate-induced PpIX in normal and orthotopic tumor-bearing rat urinary bladder. Cancer Chemother Pharmacol. 2011;67(4):775–81.PubMedCrossRefGoogle Scholar
  72. 72.
    Kah JC, Lau WK, Tan PH, Sheppard CJ, Olivo M. Endoscopic image analysis of photosensitizer fluorescence as a promising noninvasive approach for pathological grading of bladder cancer in situ. J Biomed Opt. 2008;13(5):054022.PubMedCrossRefGoogle Scholar
  73. 73.
    Pan Y, Xie H, Fedder GK. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt Lett. 2001;26(24):1966–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2(1–2):9–25.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, et al. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol. 2008;53(18):4995–5009.PubMedCrossRefGoogle Scholar
  76. 76.
    Manyak MJ, Gladkova ND, Makari JH, Schwartz AM, Zagaynova EV, Zolfaghari L, et al. Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography. J Endourol. 2005;19(5):570–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Goh AC, Tresser NJ, Shen SS, Lerner SP. Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer. Urology. 2008;72(1):133–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang ZG, Durand DB, Schoenberg M, Pan YT. Fluorescence guided optical coherence tomography for the diagnosis of early bladder cancer in a rat model. J Urol. 2005;174(6):2376–81.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmidbauer J, Remzi M, Klatte T, Waldert M, Mauermann J, Susani M, et al. Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder. Eur Urol. 2009;56(6):914–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Lingley-Papadopoulos CA, Loew MH, Zara JM. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images. J Biomed Opt. 2009;14(4):044010.PubMedCrossRefGoogle Scholar
  81. 81.
    Belinson SE, Ledford K, Rasool N, Rollins A, Wilan N, Wang C, et al. Cervical epithelial brightness by optical coherence tomography can determine histological grades of cervical neoplasia. J Low Genit Tract Dis. 2013;17(2):160–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Cauberg EC, de Bruin DM, Faber DJ, de Reijke TM, Visser M, de la Rosette JJ, et al. Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder. J Biomed Opt. 2010;15(6):066013.PubMedCrossRefGoogle Scholar
  83. 83.
    Ren H, Yuan Z, Waltzer W, Shroyer K, Pan Y. Enhancing detection of bladder carcinoma in situ by 3-dimensional optical coherence tomography. J Urol. 2010;184(4):1499–506.PubMedCrossRefGoogle Scholar
  84. 84.
    Ren H, Park KC, Pan R, Waltzer WC, Shroyer KR, Pan Y. Early detection of carcinoma in situ of the bladder: a comparative study of white light cystoscopy, narrow band imaging, 5-ALA fluorescence cystoscopy and 3-dimensional optical coherence tomography. J Urol. 2012;187(3):1063–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9(3):568–77.PubMedCrossRefGoogle Scholar
  86. 86.
    Zheng C, Lv Y, Zhong Q, Wang R, Jiang Q. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int. 2012;110(11 Pt B):E680–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Herr HW, Donat SM. A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int. 2008;102(9):1111–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Herr HW, Donat SM. Reduced bladder tumour recurrence rate associated with narrow-band imaging surveillance cystoscopy. BJU Int. 2011;107(3):396–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Cauberg EC, Kloen S, Visser M, de la Rosette JJ, Babjuk M, Soukup V, et al. Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer. Urology. 2010;76(3):658–63.PubMedCrossRefGoogle Scholar
  90. 90.
    Goetz M. Endomicroscopy and targeted imaging of gastric neoplasia. Gastrointest Endosc Clin N Am. 2013;23(3):597–606.PubMedCrossRefGoogle Scholar
  91. 91.
    Dong YY, Li YQ, Yu YB, Liu J, Li M, Luan XR. Meta-analysis of confocal laser endomicroscopy for the detection of colorectal neoplasia. Colorectal Dis. 2013;15(9):e488–95.PubMedGoogle Scholar
  92. 92.
    Sonn GA, Jones SN, Tarin TV, Du CB, Mach KE, Jensen KC, et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J Urol. 2009;182(4):1299–305.PubMedCrossRefGoogle Scholar
  93. 93.
    Wiesner C, Jager W, Salzer A, Biesterfeld S, Kiesslich R, Hampel C, et al. Confocal laser endomicroscopy for the diagnosis of urothelial bladder neoplasia: a technology of the future? BJU Int. 2011;107(3): 399–403.PubMedCrossRefGoogle Scholar
  94. 94.
    Bonnal JL, Rock Jr A, Gagnat A, Papadopoulos S, Filoche B, Mauroy B. Confocal laser endomicroscopy of bladder tumors associated with photodynamic diagnosis: an ex vivo pilot study. Urology. 2012;80(5):1162. e1-5.PubMedCrossRefGoogle Scholar
  95. 95.
    Yuan Z, Wang Z, Pan R, Liu J, Cohen H, Pan Y. High-resolution imaging diagnosis and staging of bladder cancer: comparison between optical coherence tomography and high-frequency ultrasound. J Biomed Opt. 2008;13(5):054007.PubMedCrossRefGoogle Scholar
  96. 96.
    Cicchi R, Crisci A, Cosci A, Nesi G, Kapsokalyvas D, Giancane S, et al. Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ. Opt Express. 2010;18(4):3840–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Evans CL, Xie XS. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem (Palo Alto, Calif). 2008;1:883–909.CrossRefGoogle Scholar
  98. 98.
    Gao L, Zhou H, Thrall MJ, Li F, Yang Y, Wang Z, et al. Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy. Biomed Opt Express. 2011;2(4):915–26.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Scott Department of Urology, Beth and Dave Swalm chair in Urologic Oncology, Multidisciplinary Bladder Cancer ProgramBaylor College of MedicineHoustonUSA
  2. 2.Department of UrologyHouston Methodist HospitalHoustonUSA

Personalised recommendations