Skip to main content

Biopharmaceutical Considerations of Opioid Analgesics in Models of Self-Administration: Review and Summary

  • Chapter
  • First Online:
Book cover Neurobiological Studies of Addiction in Chronic Pain States

Part of the book series: Contemporary Clinical Neuroscience ((CCNE,volume 17))

  • 813 Accesses

Abstract

Throughout this volume we have discussed the opioid analgesics and the propensity for subjects with established chronic pain to develop opioid-induced addiction. The class of opioid analgesic compounds and pharmaceutical dosage forms include not only chemicals with similar characteristics but also some significant distinctions that can impact the ultimate pharmacological effects on both analgesia and potential for addiction. In developing and/or implementing animal models of opioid addiction in the state of chronic pain it is valuable to be cognizant of the physicochemical and pharmacological characteristics of specific opioid analgesics. The objective of this chapter is to feature biopharmaceutical aspects of a series of the most common prescription analgesics opioids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IOM. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  2. Yekkirala AS, Banks ML, Lunzer MM, Negus SS, Rice KC, Portoghese PS. Clinically employed opioid analgesics produce antinociception via mu-delta opioid receptor heteromers in Rhesus monkeys. ACS Chem Neurosci. 2012;3:720–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Koob GF, Le Moal M. Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363:3113–23.

    PubMed Central  PubMed  Google Scholar 

  4. Calixto JB, Beirith A, Ferreira J, Santos AR, Filho VC, Yunes RA. Naturally occurring antinociceptive substances from plants. Phytother Res. 2000;14:401–18.

    CAS  PubMed  Google Scholar 

  5. Schug SA, Saunders D, Kurowski I, Paech MJ. Neuraxial drug administration: a review of treatment options for anaesthesia and analgesia. CNS Drugs. 2006;20:917–33.

    CAS  PubMed  Google Scholar 

  6. Hardman JG, Limbird LE. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill; 1996.

    Google Scholar 

  7. Soars MG, Petullo DM, Eckstein JA, Kasper SC, Wrighton SA. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos. 2004;32:140–8.

    CAS  PubMed  Google Scholar 

  8. Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos. 1998;26:507–12.

    CAS  PubMed  Google Scholar 

  9. Stone AN, Macekenzie PI, Galetin A, Houston JB, Miners JO. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human UDP glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos. 2003;31:1086–9.

    CAS  PubMed  Google Scholar 

  10. King CD, Rios GR, Assouline JA, Tephly TR. Expression of the UDP glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys. 1999;365:156–62.

    CAS  PubMed  Google Scholar 

  11. Yamada H, Ishii K, Ishii Y, Ieiri I, Nishio S, Morioka T, Oguri K. Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci. 2003;28:395–401.

    CAS  PubMed  Google Scholar 

  12. Congiu M, Mashford ML, Slavin JL, Desmond PV. UDP glucuronosyltransferase mRNA levels in human liver disease. Drug Metab Dispos. 2002;30:129–34.

    CAS  PubMed  Google Scholar 

  13. Deneau G, Yanagita T, Seevers MH. Self-administration of psychoactive substances by the monkey. Psychopharmacologia. 1969;16:30–48.

    CAS  PubMed  Google Scholar 

  14. Hill RC, Romer D. Comparison of the self-administration liabilities of morphine and pentazocine in the rhesus monkey. Br J Pharmacol. 1976;58:270P.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Mello NK, Mendelson JH. Effects of the neuropeptide DG-AVP on morphine and food self-administration by dependent rhesus monkey. Pharmacol Biochem Behav. 1979;10:415–9.

    CAS  PubMed  Google Scholar 

  16. Hoffmeister F. Progressive-ratio performance in the rhesus monkey maintained by opiate infusions. Psychopharmacology (Berl). 1979;62:181–6.

    CAS  Google Scholar 

  17. Dewey WL. Background on animal testing in the drug delivery systems program. NIDA Res Monogr. 1981;28:69–76.

    CAS  PubMed  Google Scholar 

  18. van Ree JM, Slangen JL, de Wied D. Intravenous self-administration of drugs in rats. J Pharmacol Exp Ther. 1978;204:547–57.

    PubMed  Google Scholar 

  19. Collins RJ, Weeks JR, Cooper MM, Good PI, Russell RR. Prediction of abuse liability of drugs using IV self-administration by rats. Psychopharmacology (Berl). 1984;82:6–13.

    CAS  Google Scholar 

  20. Shaham Y, Alvares K, Nespor SM, Grunberg NE. Effect of stress on oral morphine and fentanyl self-administration in rats. Pharmacol Biochem Behav. 1992;41:615–9.

    CAS  PubMed  Google Scholar 

  21. Shaham Y, Klein LC, Alvares K, Grunberg NE. Effect of stress on oral fentanyl consumption in rats in an operant self-administration paradigm. Pharmacol Biochem Behav. 1993;46:315–22.

    CAS  PubMed  Google Scholar 

  22. Garcia-Lecumberri C, Torres I, Martin S, Crespo JA, Miguens M, Nicanor C, Higuera-Matas H, Ambrosio E. Strain differences in the dose − response relationship for morphine self-administration and impulsive choice between Lewis and Fischer 344 rats. J Psychopharmacol. 2011;25:783–91.

    CAS  PubMed  Google Scholar 

  23. Semenova S, Danysz W, Bespalov A. Low-affinity NMDA receptor channel blockers inhibit acquisition of intravenous morphine self-administration in naive mice. Eur J Pharmacol. 1999;378:1–8.

    CAS  PubMed  Google Scholar 

  24. Carney JM, Landrum RW, Cheng MS, Seale TW. Establishment of chronic intravenous drug self-administration in the C57BL/6J mouse. Neuroreport. 1991;2:477–80.

    CAS  PubMed  Google Scholar 

  25. Brown RM, Stagnitti MR, Duncan JR, Lawrence AJ. The mGlu5 receptor antagonist MTEP attenuates opiate self-administration and cue-induced opiate-seeking behaviour in mice. Drug Alcohol Depend. 2012;123:264–8.

    CAS  PubMed  Google Scholar 

  26. Ambrosio E, Goldberg SR, Elmer GI. Behavior genetic investigation of the relationship between spontaneous locomotor activity and the acquisition of morphine self-administration behavior. Behav Pharmacol. 1995;6:229–37.

    CAS  PubMed  Google Scholar 

  27. Martın S, Manzanares J, Corchero J, Garcia-Lecumberri C, Crespo JA, Fuentes JA, Ambrosio E. Differential basal proenkephalin gene expression in dorsal striatum and nucleus accumbens, and vulnerability to morphine self-administration in Fischer 344 and Lewis rats. Brain Res. 1999;821:350–5.

    PubMed  Google Scholar 

  28. Belknap JK, Crabbe JC, Riggan J, O’Toole LA. Voluntary consumption of morphine in 15 inbred mouse strains. Psychopharmacology (Berl). 1993;1993:352–8.

    Google Scholar 

  29. Milligan ED, Langer SJ, Sloane EM, He L, Wieseler-Frank J, O’Connor K, Martin D, Forsayeth JR, Maier SF, Johnson K, Chavez RA, Leinwand LA, Watkins LR. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur J Neurosci. 2005;21:2136–48.

    PubMed  Google Scholar 

  30. Semenova S, Kuzmin A, Zvartau E. Strain differences in the analgesic and reinforcing action of morphine in mice. Pharmacol Biochem Behav. 1995;50:17–21.

    CAS  PubMed  Google Scholar 

  31. Yoon YW, Lee DH, Lee BH, Chung K, Chung JM. Different strains and substrains of rats show different levels of neuropathic pain behaviors. Exp Brain Res. 1999;129:167–71.

    CAS  PubMed  Google Scholar 

  32. Mogil JS, Wilson SG, Bon K, Lee SE, Chung K, Raber P, Pieper JO, Hain HS, Belknap JK, Hubert L, Elmer GI, Chung JM, Devor M. Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain. 1999;80:67–82.

    CAS  PubMed  Google Scholar 

  33. Betourne A, Familiades J, Lacassagne L, Halley H, Cazales M, Ducommun B, Lassalle JM, Zajac JM, Frances B. Decreased motivational properties of morphine in mouse models of cancerous- or inflammatory-chronic pain: implication of supraspinal neuropeptide FF(2) receptors. Neuroscience. 2008;157:12–21.

    CAS  PubMed  Google Scholar 

  34. Suzuki T, Kishimoto Y, Misawa M. Formalin- and carrageenan-induced inflammation attenuates place preferences produced by morphine, methamphetamine and cocaine. Life Sci. 1996;59:1667–74.

    CAS  PubMed  Google Scholar 

  35. Narita M, Kishimoto Y, Ise Y, Yajima Y, Isawa K, Suzuki T. Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology. 2005;30:111–8.

    CAS  PubMed  Google Scholar 

  36. Ozaki S, Narita M, Narita M, Ozaki M, Khotib J, Suzuki T. Role of extracellular signal-regulated kinase in the ventral tegmental area in the suppression of the morphine-induced rewarding effect in mice with sciatic nerve ligation. J Neurochem. 2004;88:1389–97.

    CAS  PubMed  Google Scholar 

  37. Niikura K, Narita M, Narita M, Nakamura A, Okutsu D, Ozeki A, Kurahashi K, Kobayashi Y, Suzuki M, Suzuki T. Direct evidence for the involvement of endogenous beta-endorphin in the suppression of the morphine-induced rewarding effect under a neuropathic pain-like state. Neurosci Lett. 2008;435:257–62.

    CAS  PubMed  Google Scholar 

  38. Ozaki S, Narita M, Narita M, Iino M, Sugita J, Matsumura Y, Suzuki T. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem. 2002;82:1192–8.

    CAS  PubMed  Google Scholar 

  39. Ozaki S, Narita M, Narita M, Iino M, Miyoshi K, Suzuki T. Suppression of the morphine-induced rewarding effect and G-protein activation in the lower midbrain following nerve injury in the mouse: involvement of G-protein-coupled receptor kinase 2. Neurosci Lett. 2003;116:89–97.

    CAS  Google Scholar 

  40. Petraschka M, Li S, Gilbert T, Westenbroek R, Bruchas M, Schreiber S, Lowe J, Low M, Pintar J, Chavkin C. The absence of endogenous beta-endorphin selectively blocks phosphorylation and desensitization of mu opioid receptors following partial sciatic nerve ligation. Neuroscience. 2007;146:1795–807.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Oe K, Narita M, Imai S, Shiasaki M, Kubota C, Kasukawa A. Inhibition of the morphine-induced rewarding effect by direct activation of spinal protein kinase C in mice. Psychopharmacology (Berl). 2004;177:55–60.

    CAS  Google Scholar 

  42. Shippenburg TS, Stein C, Huber A, Millan MJ, Herz A. Motivational effects of opioids in an animal model of prolonged inflammatory pain: alteration in the effects of kappa but not of mu receptor agonists. Pain. 1988;35:179–86.

    Google Scholar 

  43. Sufka KJ. Conditioned place preference: a novel approach for analgesic drug assessment against chronic pain. Pain. 1994;58:355–66.

    CAS  PubMed  Google Scholar 

  44. Cahill CM, Xue L, Grenier P, Magnussen C, Lecour S, Olmstead MC. Changes in morphine reward in a model of neuropathic pain. Behav Pharmacol. 2013;24:207–13.

    CAS  PubMed  Google Scholar 

  45. Martin TJ, Kim SA, Buechler NL, Porreca F, Eisenach JC. Opioid self-administration in the nerve-injured rat: relevance of antiallodynic effects to drug consumption and effects of intrathecal analgesics. Anesthesiology. 2007;106:312–22.

    CAS  PubMed  Google Scholar 

  46. McWilliams K, Fallon M. Fast-acting fentanyl preparations and pain management. QJM. 2013;106:887–90.

    CAS  PubMed  Google Scholar 

  47. Paech MJ, Bloor M, Schug SA. New formulations of fentanyl for acute pain management. Drugs Today (Barc). 2012;48:119–32.

    CAS  Google Scholar 

  48. Davis MP. Fentanyl for breakthrough pain: a systematic review. Expert Rev Neurother. 2011;11:1197–216.

    CAS  PubMed  Google Scholar 

  49. Sellers EM, Schuller R, Romach MK, Horbay GL. Relative abuse potential of opioid formulations in Canada: a structured field study. J Opioid Manag. 2006;2:219–27.

    PubMed  Google Scholar 

  50. Edinboro LE, Poklis A, Trautman D, Lowry S, Backer R, Harvey CM. Fatal fentanyl intoxication following excessive transdermal application. J Forensic Sci. 1997;42:741–3.

    CAS  PubMed  Google Scholar 

  51. Liappas IA, Dimopoulos NP, Mellos E, Gitsa OE, Liappas AI, Rabavilas AD. Oral transmucosal abuse of transdermal fentanyl. J Psychopharmacol. 2004;18:277–80.

    CAS  PubMed  Google Scholar 

  52. Woodall KL, Martin TL, McLellan BA. Oral abuse of fentanyl patches (Duragesic): seven case reports. J Forensic Sci. 2008;53:222–5.

    CAS  PubMed  Google Scholar 

  53. Barrueto Jr F, Howland MA, Hoffman RS, Nelson LS. The fentanyl tea bag. Vet Hum Toxicol. 2004;46:30–1.

    PubMed  Google Scholar 

  54. Coon TP, Miller M, Kaylor D, Jones-Spangle K. Rectal insertion of fentanyl patches: a new route of toxicity. Ann Emerg Med. 2005;46:473.

    PubMed  Google Scholar 

  55. Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. Drug Metab Dispos. 1996;24:932–9.

    CAS  PubMed  Google Scholar 

  56. Uno Y, Iwasaki K, Yamazaki H, Nelson DR. Macaque cytochromes P450: nomenclature, transcript, gene, genomic structure, and function. Drug Metab Rev. 2011;43:346–61.

    CAS  PubMed  Google Scholar 

  57. Feierman DE. Identification of cytochrome P450 3A1/2 as the major P450 isoform responsible for the metabolism of fentanyl by rat liver microsomes. Anesth Analg. 1996;82:936–41.

    CAS  PubMed  Google Scholar 

  58. Sia AT, Lim Y, Lim EC, Goh RW, Law HY, Landau R, Teo YY, Tan EC. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology. 2008;109:520–6.

    CAS  PubMed  Google Scholar 

  59. Labroo RB, Paine MF, Thummel KE, Kharasch ED. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos. 1997;25:1072–80.

    CAS  PubMed  Google Scholar 

  60. Liu CH, Peck K, Huang JD, Lin MS, Wang CH, Hsu WP, Wang HW, Lee HL, Lai ML. Screening CYP3A single nucleotide polymorphisms in a Han Chinese population with a genotyping chip. Pharmacogenomics. 2005;6:731–47.

    CAS  PubMed  Google Scholar 

  61. Dong Z-L, Li H, Chen Q-X, Hu Y, Wu S-J, Tang L-Y, Gong W-Y, Xie G-H, Fang X-M. Effect of CYP3A4*1G on the fentanyl consumption for intravenous patient-controlled analgesia after total abdominal hyterectomy in Chinese Han population. J Clin Pharm Ther. 2012;37(2):153–6.

    CAS  PubMed  Google Scholar 

  62. Zhang W, Chang YZ, Kan QC, Zhang LR, Li ZS, Lu H, Wang ZY, Chu QJ, Zhang J. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol. 2010;66:61–6.

    CAS  PubMed  Google Scholar 

  63. Feierman DE. The effect of paracetamol (acetaminophen) on fentanyl metabolism in vitro. Acta Anaesthesiol Scand. 2000;44:560–3.

    CAS  PubMed  Google Scholar 

  64. France CP, Gerak LR, Flynn D, Winger GD, Medzihradsky F, Bagley JR, Brockunier LL, Woods JH. Behavioral effects and receptor binding affinities of fentanyl derivatives in rhesus monkeys. J Pharmacol Exp Ther. 1995;274:17–28.

    CAS  PubMed  Google Scholar 

  65. Ko MC, Terner J, Hursh S, Woods JH, Winger G. Relative reinforcing effects of three opioids with different durations of action. J Pharmacol Exp Ther. 2002;301:698–704.

    CAS  PubMed  Google Scholar 

  66. Broadbear JH, Winger G, Woods JH. Self-administration of fentanyl, cocaine and ketamine: effects on the pituitary-adrenal axis in rhesus monkeys. Psychopharmacology (Berl). 2004;176:398–406.

    CAS  Google Scholar 

  67. Morgan AD, Campbell UC, Fons RD, Carroll ME. Effects of agmatine on the escalation of intravenous cocaine and fentanyl self-administration in rats. Pharmacol Biochem Behav. 2002;72:873–80.

    CAS  PubMed  Google Scholar 

  68. Shaham Y. Immobilization stress-induced oral opioid self-administration and withdrawal in rats: role of conditioning factors and the effect of stress on “relapse” to opioid drugs. Psychopharmacology (Berl). 1993;111:477–85.

    CAS  Google Scholar 

  69. Thornton SR, Lohmann AB, Nicholson RA, Smith FL. Fentanyl self-administration in juvenile rats that were tolerant and dependent to fentanyl as infants. Pharmacol Biochem Behav. 2000;65:563–70.

    CAS  PubMed  Google Scholar 

  70. Wade CL, Schuster DJ, Domingo KM, Kitto KF, Fairbanks CA. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration. Eur J Pharmacol. 2008;587:135–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Kupers R, Gybels J. The consumption of fentanyl is increased in rats with nociceptive but not with neuropathic pain. Pain. 1995;60:137–41.

    CAS  PubMed  Google Scholar 

  72. Colpaert FC, Tarayre JP, Alliaga M, Bruins Slot LA, Attal N, Koek W. Opiate self-administration as a measure of chronic nociceptive pain in arthritic rats. Pain. 2001;91: 33–45.

    CAS  PubMed  Google Scholar 

  73. Wade CL, Krumenacher P, Kitto KF, Peterson CD, Wilcox GL, Fairbanks CA. Effect of chronic pain on fentanyl self-administration in mice. PLoS One. 2013;8:e79239.

    PubMed Central  PubMed  Google Scholar 

  74. Olkkola KT, Hagelberg NM. Oxycodone: new “old” drug. Curr Opin Anaesthesiol. 2009;22:459–62.

    PubMed  Google Scholar 

  75. Leppert W. Role of oxycodone and oxycodone/naloxone in cancer pain management. Pharmacol Rep. 2010;62:578–91.

    CAS  PubMed  Google Scholar 

  76. Kalso E, Poyhia R, Onnela P, Linko K, Tigerstedt I, Tammisto T. Intravenous morphine and oxycodone for pain after abdominal surgery. Acta Anaesthesiol Scand. 1991;35:642–6.

    CAS  PubMed  Google Scholar 

  77. Poyhia R, Seppala T, Olkkola KT, Kalso E. The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. Br J Clin Pharmacol. 1992;33:617–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Silvasti M, Rosenberg P, Seppala T, Svartling N, Pitkanen M. Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Acta Anaesthesiol Scand. 1998;42(5):576–80.

    CAS  PubMed  Google Scholar 

  79. Volpe DA, McMahon Tobin GA, Mellon RD, Katki AG, Parker RJ, Colatsky T, Kropp TJ, Verbois SL. Uniform assessment and ranking of opioid mu receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol. 2011;59:385–90.

    CAS  PubMed  Google Scholar 

  80. Peckham EM, Traynor JR. Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague-Dawley rats. J Pharmacol Exp Ther. 2006;316:1195–201.

    CAS  PubMed  Google Scholar 

  81. Boström E, Simonsson US, Hammarlund-Udenaes M. Oxycodone pharmacokinetics and pharmacodynamics in the rat in the presence of the P-glycoprotein inhibitor PSC833. J Pharm Sci. 2005;94:1060–6.

    PubMed  Google Scholar 

  82. Hassan HE, Myers AL, Lee IJ, Coop A, Eddington ND. Oxycodone induces overexpression of P-glycoprotein (ABCB1) and affects paclitaxel’s tissue distribution in Sprague Dawley rats. J Pharm Sci. 2007;96:2494–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Bostrom E, Simonsson US, Hammarlund-Udenaes M. In vivo blood–brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos. 2006;34:1624–31.

    PubMed  Google Scholar 

  84. Poyhia R, Vainio A, Kalso E. A review of oxycodone’s clinical pharmacokinetics and pharmacodynamics. J Pain Symptom Manage. 1993;8:63–7.

    CAS  PubMed  Google Scholar 

  85. Kalso E. Oxycodone. J Pain Symptom Manage. 2005;29:S47–56.

    CAS  PubMed  Google Scholar 

  86. Andreassen TN, Eftedal I, Klepstad P, Davies A, Bjordal K, Lundstrom S, Kaasa S, Dale O. Do CYP2D6 genotypes reflect oxycodone requirements for cancer patients treated for cancer pain? A cross-sectional multicentre study. Eur J Clin Pharmacol. 2012;68:55–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Zwisler ST, Enggaard TP, Noehr-Jensen L, Mikkelsen S, Verstuyft C, Becquemont L, Sindrup SH, Brosen K. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam Clin Pharmacol. 2010;24:517–24.

    CAS  PubMed  Google Scholar 

  88. Foster A, Mobley E, Wang Z. Complicated pain management in a CYP450 2D6 poor metabolizer. Pain Pract. 2007;7:352–6.

    PubMed  Google Scholar 

  89. Andreassen TN, Klepstad P, Davies A, Bjordal K, Lundstrom S, Kaasa S, Dale O. Influences on the pharmacokinetics of oxycodone: a multicentre cross-sectional study in 439 adult cancer patients. Eur J Clin Pharmacol. 2011;67:493–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Laine K, Olkkola KT. Effect of inhibition of cytochrome P450 enzymes 2D6 and 3A4 on the pharmacokinetics of intravenous oxycodone: a randomized, three-phase, crossover, placebo-controlled study. Clin Drug Investig. 2011;31:143–53.

    CAS  PubMed  Google Scholar 

  91. Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther. 1998;64:603–11.

    CAS  PubMed  Google Scholar 

  92. Gronlund J, Saari T, Hagelberg N, Martikainen IK, Neuvonen PJ, Olkkola KT, Laine K. Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J Clin Pharmacol. 2010;50:101–8.

    CAS  PubMed  Google Scholar 

  93. Kummer O, Hammann F, Moser C, Schaller O, Drewe J, Krahenbuhl S. Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Eur J Clin Pharmacol. 2011;67:63–71.

    CAS  PubMed  Google Scholar 

  94. Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K. Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol. 2010;70:78–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Gronlund J, Saari TI, Hagelberg N, Neuvonen PJ, Olkkola KT, Laine K. Miconazole oral gel increases exposure to oral oxycodone by inhibition of CYP2D6 and CYP3A4. Antimicrob Agents Chemother. 2011;55:1063–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Lee HK, Lewis LD, Tsongalis GJ, McMullin M, Schur BC, Wong SH, Yeo KT. Negative urine opioid screening caused by rifampin-mediated induction of oxycodone hepatic metabolism. Clin Chim Acta. 2006;367:196–200.

    CAS  PubMed  Google Scholar 

  97. Compton WM, Volkow ND. Major increases in opioid analgesic abuse in the United States: concerns and strategies. Drug Alcohol Depend. 2006;81:103–7.

    PubMed  Google Scholar 

  98. Leri F, Burns LH. Ultra-low-dose naltrexone reduces the rewarding potency of oxycodone and relapse vulnerability in rats. Pharmacol Biochem Behav. 2005;82:252–62.

    CAS  PubMed  Google Scholar 

  99. Beardsley PM, Aceto MD, Cook CD, Bowman ER, Newman JL, Harris LS. Discriminative stimulus, reinforcing, physical dependence, and antinociceptive effects of oxycodone in mice, rats, and rhesus monkeys. Exp Clin Psychopharmacol. 2004;12:163–72.

    CAS  PubMed  Google Scholar 

  100. Zhang Y, Picetti R, Butelman ER, Schlussman SD, Ho A, Kreek MJ. Behavioral and neurochemical changes induced by oxycodone differ between adolescent and adult mice. Neuropsychopharmacology. 2009;34:912–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Wade CL, Kitto KF, Schuster DJ, Peterson CD, Koob GF, Fairbanks CA: Fentanyl self-administration in sickle cell anemia- and CFA-induced chronic pain. Pain in sickle cell disease: basic and clinical sciences, pre-conference symposium to the American Pain Society 2012: May 16.

    Google Scholar 

  102. Molina DK, Hargrove VM. What is the lethal concentration of hydrocodone?: a comparison of postmortem hydrocodone concentrations in lethal and incidental intoxications. Am J Forensic Med Pathol. 2011;32:108–11.

    PubMed  Google Scholar 

  103. Nazarian A, Are D, Tenayuca JM. Acetaminophen modulation of hydrocodone reward in rats. Pharmacol Biochem Behav. 2011;99:307–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Tenayuca JM, Nazarian A. Hydrocodone and morphine possess similar rewarding effects and reduce ERK and CREB phosphorylation in the nucleus accumbens. Synapse. 2012;66:918–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Gershman JA, Fass AD. Hydrocodone rescheduling amendment and pipeline products on the horizon. P T. 2013;37:399–404.

    Google Scholar 

  106. Smith MA, Morgan M. Remifentanil. Anaesthesia. 1997;52:291–3.

    CAS  PubMed  Google Scholar 

  107. Schlatter L, Pflimlin E, Fehrke B, Meyer A, Tamm M, Stolz D. Propofol versus propofol plus hydrocodone for flexible bronchoscopy: a randomised study. Eur Respir J. 2011;38:529–37.

    CAS  PubMed  Google Scholar 

  108. Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, Chen C, Chen X, Choo E, Cianfrogna J, Cox LM, Gibbs JP, Gibbs MA, Hatch H, Hop CE, Kasman IN, Laperle J, Liu J, Liu X, Logman M, Maclin D, Nedza FM, Nelson F, Olson E, Rahematpura S, Raunig D, Rogers S, Schmidt K, Spracklin DK, Szewc M, Troutman M, Tseng E, Tu M, Van Deusen JW, Venkatakrishnan K, Walens G, Wang EQ, Wong D, Yasgar AS, Zhang C. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33:165–74.

    CAS  PubMed  Google Scholar 

  109. Hutchinson MR, Menelaou A, Foster DJ, Coller JK, Somogyi AA. CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br J Clin Pharmacol. 2004;57:287–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Meyer MR, Maurer HH. Absorption, distribution, metabolism and excretion pharmacogenomics of drugs of abuse. Pharmacogenomics. 2011;12:215–33.

    CAS  PubMed  Google Scholar 

  111. Barakat NH, Atayee RS, Best BM, Pesce AJ. Relationship between the concentration of hydrocodone and its conversion to hydromorphone in chronic pain patients using urinary excretion data. J Anal Toxicol. 2012;36:257–64.

    CAS  PubMed  Google Scholar 

  112. Lelas S, Wegert S, Otton SV, Sellers EM, France CP. Inhibitors of cytochrome P450 differentially modify discriminative-stimulus and antinociceptive effects of hydrocodone and hydromorphone in rhesus monkeys. Drug Alcohol Depend. 1999;54:239–49.

    CAS  PubMed  Google Scholar 

  113. Tomkins DM, Otton SV, Joharchi N, Li NY, Balster RF, Tyndale RF, Sellers EM. Effect of cytochrome P450 2D1 inhibition on hydrocodone metabolism and its behavioral consequences in rats. J Pharmacol Exp Ther. 1997;280:1374–82.

    CAS  PubMed  Google Scholar 

  114. Otton SV, Schadel M, Cheung SW, Kaplan HL, Busto UE, Sellers EM. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin Pharmacol Ther. 1993;54:463–72.

    CAS  PubMed  Google Scholar 

  115. Cvejic S, Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997;272:26959–64.

    CAS  PubMed  Google Scholar 

  116. Cicero TJ, Inciardi JA, Munoz A. Trends in abuse of Oxycontin and other opioid analgesics in the United States: 2002-2004. J Pain. 2005;6:662–72.

    PubMed  Google Scholar 

  117. Manchikanti L, Fellows B, Ailinani H, Pampati V. Therapeutic use, abuse, and nonmedical use of opioids: a ten-year perspective. Pain Physician. 2010;13:401–35.

    PubMed  Google Scholar 

  118. Nelson LS, Perrone J, Juurlink DN. Painful decision-making at FDA. Expert Opin Drug Saf. 2014;13:407–10.

    CAS  PubMed  Google Scholar 

  119. Yewell J, Haydon R, Archer S, Manaligod JM. Complications of intranasal prescription narcotic abuse. Ann Otol Rhinol Laryngol. 2002;111:174–7.

    PubMed  Google Scholar 

  120. Alexander D, Alexander K, Valentino J. Intranasal hydrocodone-acetaminophen abuse induced necrosis of the nasal cavity and pharynx. Laryngoscope. 2012;122:2378–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Colpaert FC, Meert T, De Witte P, Schmitt P. Further evidence validating adjuvant arthritis as an experimental model of chronic pain in the rat. Life Sci. 1982;31:67–75.

    CAS  PubMed  Google Scholar 

  122. Colpaert FC, De Witte P, Maroli AN, Awouters F, Niemegeers CJE, Janssen PAJ. Self-administration of the analgesic suprofen in arthritic rats: evidence of Mycobacterium butyricum-induced arthritis as an experimental model of chronic pain. Life Sci. 1980;27:921–8.

    CAS  PubMed  Google Scholar 

  123. Lyness WH, Smith FL, Heavner JE, Iacono CU, Garvin RD. Morphine self-administration in the rat during adjuvant-induced arthritis. Life Sci. 1989;45:2217–24.

    CAS  PubMed  Google Scholar 

  124. King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009;12:1364–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Gutierrez T, Crystal JD, Zvonok AM, Makriyannis A, Hohmann AG. Self-medication of a cannabinoid CB(2) agonist in an animal model of neuropathic pain. Pain. 2011;152:1976–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Murray A, Hagen NA. Hydromorphone. J Pain Symptom Manage. 2005;29:S57–66.

    CAS  PubMed  Google Scholar 

  127. Coffman BL, King CD, Rios GR, Tephly TR. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y (268) and UGT2BYH(268). Drug Metab Dispos. 1998;26:73–7.

    CAS  PubMed  Google Scholar 

  128. Wright AW, Mather LE, Smith MT. Hydromorphone-3-glucuronide: a more potent neuro-excitant than its structural analogue, morphine-3-glucuronide. Life Sci. 2001;69:409–20.

    CAS  PubMed  Google Scholar 

  129. Fainsinger R, Schoeller T, Boiskin M, Bruera E. Palliative care round: cognitive failure and coma after renal failure in a patient receiving captopril and hydromorphone. J Palliat Care. 1993;9:53–5.

    CAS  PubMed  Google Scholar 

  130. Babul N, Darke AC, Hagen N. Hydromorphone metabolite accumulation in renal failure. J Pain Symptom Manage. 1995;10:184–6.

    CAS  PubMed  Google Scholar 

  131. Paramanandam G, Prommer E, Schwenke DC. Adverse effects in hospice patients with chronic kidney disease receiving hydromorphone. J Palliat Med. 2011;14:1029–33.

    PubMed  Google Scholar 

  132. Benetton SA, Borges VM, Chang TK, McErlane KM. Role of individual human cytochrome P450 enzymes in the in vitro metabolism of hydromorphone. Xenobiotica. 2004;34:335–44.

    CAS  PubMed  Google Scholar 

  133. Shram MJ, Sathyan G, Khanna S, Tudor IC, Nath R, Thipphawong J, Sellers EM. Evaluation of the abuse potential of extended release hydromorphone versus immediate release hydromorphone. J Clin Psychopharmacol. 2010;30:25–33.

    PubMed  Google Scholar 

  134. Hays H, Hagen N, Thirlwell M, Dhaliwal H, Babul N, Harsanyi Z, Darke AC. Comparative clinical efficacy and safety of immediate release and controlled release hydromorphone for chronic severe cancer pain. Cancer. 1994;74:1808–16.

    CAS  PubMed  Google Scholar 

  135. Palangio M, Northfelt DW, Portenoy RK, Brookoff D, Doyle Jr RT, Dornseif BE, Damask MC. Dose conversion and titration with a novel, once-daily, OROS osmotic technology, extended-release hydromorphone formulation in the treatment of chronic malignant or nonmalignant pain. J Pain Symptom Manage. 2002;23:355–68.

    CAS  PubMed  Google Scholar 

  136. Ternes JW, Ehrman RN, O’Brien CP. Nondependent monkeys self-administer hydromorphone. Behav Neurosci. 1985;99:583–8.

    CAS  PubMed  Google Scholar 

  137. Mello NK, Bree MP, Mendelson JH. Comparison of buprenorphine and methadone effects on opiate self-administration in primates. J Pharmacol Exp Ther. 1983;225:378–86.

    CAS  PubMed  Google Scholar 

  138. Leppert W. The role of methadone in cancer pain treatment—a review. Int J Clin Pract. 2009;63:1095–109.

    CAS  PubMed  Google Scholar 

  139. Ferrari A, Coccia CP, Bertolini A, Sternieri E. Methadone–metabolism, pharmacokinetics and interactions. Pharmacol Res. 2004;50:551–9.

    CAS  PubMed  Google Scholar 

  140. Ripamonti C, Zecca E, Brunelli C, Rizzio E, Saita L, Lodi F, De Conno F. Rectal methadone in cancer patients with pain. A preliminary clinical and pharmacokinetic study. Ann Oncol. 1995;6:841–3.

    CAS  PubMed  Google Scholar 

  141. Manfredi PL, Foley KM, Payne R, Houde R, Inturrisi CE. Parenteral methadone: an essential medication for the treatment of pain. J Pain Symptom Manage. 2003;26:687–8.

    PubMed  Google Scholar 

  142. Ripamonti C, Bianchi M. The use of methadone for cancer pain. Hematol Oncol Clin North Am. 2002;16:543–55.

    PubMed  Google Scholar 

  143. Oldendorf WH, Hyman S, Braun L, Oldendorf SZ. Blood–brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science. 1972;178:984–6.

    CAS  PubMed  Google Scholar 

  144. Wang JS, Ruan Y, Taylor RM, Donovan JL, Markowitz JS, DeVane CL. Brain penetration of methadone (R)- and (S)-enantiomers is greatly increased by P-glycoprotein deficiency in the blood–brain barrier of Abcb1a gene knockout mice. Psychopharmacology (Berl). 2004;173: 132–8.

    CAS  Google Scholar 

  145. Tournier N, Chevillard L, Megarbane B, Pirnay S, Scherrmann JM, Decleves X. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol. 2010;13:905–15.

    CAS  PubMed  Google Scholar 

  146. Inturrisi CE, Verebely K. Disposition of methadone in man after a single oral dose. Clin Pharmacol Ther. 1972;13:923–30.

    CAS  PubMed  Google Scholar 

  147. Eap CB, Bertschy G, Baumann P, Finkbeiner T, Gastpar M, Scherbaum N. High interindividual variability of methadone enantiomer blood levels to dose ratios. Arch Gen Psychiatry. 1998;55:89–90.

    CAS  PubMed  Google Scholar 

  148. Kharasch ED, Hoffer C, Whittington D, Sheffels P. Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther. 2004;76:250–69.

    CAS  PubMed  Google Scholar 

  149. Gerber JG, Rhodes RJ, Gal J. Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality. 2004;16(1):36–44.

    CAS  PubMed  Google Scholar 

  150. Bruce RD, Altice FL, Gourevitch MN, Friedland GH. Pharmacokinetic drug interactions between opioid agonist therapy and antiretroviral medications: implications and management for clinical practice. J Acquir Immune Defic Syndr. 2006;41:563–72.

    CAS  PubMed  Google Scholar 

  151. Kharasch ED, Hoffer C, Whittington D, Walker A, Bedynek PS. Methadone pharmacokinetics are independent of cytochrome P4503A (CYP3A) activity and gastrointestinal drug transport: insights from methadone interactions with ritonavir/indinavir. Anesthesiology. 2009;110:660–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Kharasch ED, Bedynek PS, Hoffer C, Walker A, Whittington D. Lack of indinavir effects on methadone disposition despite inhibition of hepatic and intestinal cytochrome P4503A (CYP3A). Anesthesiology. 2012;116:432–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Marzolini C, Troillet N, Telenti A, Baumann P, Decosterd LA, Eap CB. Efavirenz decreases methadone blood concentrations. AIDS. 2000;14:1291–2.

    CAS  PubMed  Google Scholar 

  154. Eap CB, Bourquin M, Martin J, Spagnoli J, Livoti S, Powell K, Baumann P, Deglon J. Plasma concentrations of the enantiomers of methadone and therapeutic response in methadone maintenance treatment. Drug Alcohol Depend. 2000;61:47–54.

    CAS  PubMed  Google Scholar 

  155. Fishman SM, Wilsey B, Mahajan G, Molina P. Methadone reincarnated: novel clinical applications with related concerns. Pain Med. 2002;3:339–48.

    PubMed  Google Scholar 

  156. Webster LR, Cochella S, Dasgupta N, Fakata KL, Fine PG, Fishman SM, Grey T, Johnson EM, Lee LK, Passik SD, Peppin J, Porucznik CA, Ray A, Schnoll SH, Stieg RL, Wakeland W. An analysis of the root causes for opioid-related overdose deaths in the United States. Pain Med. 2011;12 Suppl 2:S26–35.

    PubMed  Google Scholar 

  157. Wang NS, Stewart RB, Meisch RA. Orally delivered methadone as a reinforcer: Effects of the opioid antagonist naloxone. Drug Alcohol Depend. 1999;55:79–84.

    CAS  PubMed  Google Scholar 

  158. Stitzer ML, McCaul ME, Bigelow GE, Liebson IA. Oral methadone self-administration: effects of dose and alternative reinforcers. Clin Pharmacol Ther. 1983;34:29–35.

    CAS  PubMed  Google Scholar 

  159. Spiga R, Huang DB, Meisch RA, Grabowski J. Human methadone self-administration: effects of diazepam pretreatment. Exp Clin Psychopharmacol. 2001;9:40–6.

    CAS  PubMed  Google Scholar 

  160. Harrigan SE, Downs DA. Self-administration of heroin, acetylmethadol, morphine, and methadone in rhesus monkeys. Life Sci. 1978;22:619–23.

    CAS  PubMed  Google Scholar 

  161. Meisch RA, Stewart RB, Wang NS. Orally delivered methadone as a reinforcer for rhesus monkeys: the relationship between drug concentration and choice. Pharmacol Biochem Behav. 1996;54:547–54.

    CAS  PubMed  Google Scholar 

  162. Mello NK, Lukas SE, Bree MP, Mendelson JH. Progressive ratio performance maintained by buprenorphine, heroin and methadone in Macaque monkeys. Drug Alcohol Depend. 1988;21:81–97.

    CAS  PubMed  Google Scholar 

  163. Werner TE, Smith SG, Davis WM. Analysis of reinforcement during intragastric self-administration of morphine and methadone in the rat. Commun Psychopharmacol. 1977;1:19–27.

    CAS  PubMed  Google Scholar 

  164. Werner TE, Smith SG, Davis WM. A dose-response comparison between methadone and morphine self-administration. Psychopharmacologia. 1976;47:209–11.

    CAS  PubMed  Google Scholar 

  165. Chiba S, Young GA, Moreton JE, Khazan N. Head-shake distributions during self-maintained dependence on morphine, methadone, and l-alpha-acetylmethadol (LAAM) in the rat. Psychopharmacology (Berl). 1977;54:105–7.

    CAS  Google Scholar 

  166. Martin TJ, Kahn WR, Xiao R, Childers SR. Differential regional effects of methadone maintenance compared to heroin dependence on mu-opioid receptor desensitization in rat brain. Synapse. 2007;61:176–84.

    CAS  PubMed  Google Scholar 

  167. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43:879–923.

    CAS  PubMed  Google Scholar 

  168. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL, Jacoby HI, Selve N. Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J Pharmacol Exp Ther. 1993;267:331–40.

    CAS  PubMed  Google Scholar 

  169. Liu HC, Wang N, Liu CS, Hu YQ, Liu JF, Hou YN. Distribution of enantiomers of trans-tramadol and trans-O-demethyltramadol in central nervous system of rats. Acta Pharmacol Sin. 2001;22:871–5.

    CAS  PubMed  Google Scholar 

  170. Gillen C, Haurand M, Kobelt DJ, Wendt S. Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:116–21.

    CAS  PubMed  Google Scholar 

  171. Epstein DH, Preston KL, Jasinski DR. Abuse liability, behavioral pharmacology, and physical-dependence potential of opioids in humans and laboratory animals: lessons from tramadol. Biol Psychol. 2006;73:90–9.

    PubMed Central  PubMed  Google Scholar 

  172. Paar WD, Poche S, Gerloff J, Dengler HJ. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol. 1997;53:235–9.

    CAS  PubMed  Google Scholar 

  173. Yanagita T. Drug dependence potential of 1-(m-methoxyphenyl)-2-dimethylaminomethyl)-cyclohexan-1-ol hydrochloride (tramadol) tested in monkeys. Arzneimittelforschung. 1978;28:158–63.

    CAS  PubMed  Google Scholar 

  174. Ren YH, Zheng JW. Influence of tramadol on morphine discriminative behavior in rats. Acta Pharmacol Sin. 2000;21:924–6.

    CAS  PubMed  Google Scholar 

  175. O’Connor EC, Chapman K, Butler P, Mead AN. The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev. 2010;35:912–38.

    PubMed  Google Scholar 

  176. Babalonis S, Lofwall MR, Nuzzo PA, Siegel AJ, Walsh SL. Abuse liability and reinforcing efficacy of oral tramadol in humans. Drug Alcohol Depend. 2013;129:116–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Liu ZM, Zhou WH, Lian Z, Mu Y, Ren ZH, Cao JQ, Cai ZJ. Drug dependence and abuse potential of tramadol. Zhongguo Yao Li Xue Bao. 1999;20:52–4.

    CAS  PubMed  Google Scholar 

  178. Naslund S, Dahlqvist R. [Treatment with tramadol can give rise to dependence and abuse]. Lakartidningen. 2003;100(9):712–4.

    PubMed  Google Scholar 

  179. Nakamura A, Narita M, Miyoshi K, Shindo K, Okutsu D, Suzuki M, Higashiyama K, Suzuki T. Changes in the rewarding effects induced by tramadol and its active metabolite M1 after sciatic nerve injury in mice. Psychopharmacology (Berl). 2008;200:307–16.

    CAS  Google Scholar 

  180. James MK, Feldman PL, Schuster SV, Bilotta JM, Brackeen MF, Leighton HJ. Opioid receptor activity of GI87084B, a novel ultra-short acting analgesic in isolated tissues. J Pharmacol Exp Ther. 1991;259:712–8.

    CAS  PubMed  Google Scholar 

  181. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL. The Pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in health adult male volunteers. Anesthesiology. 1993;79:881–92.

    CAS  PubMed  Google Scholar 

  182. Verghese ST, Hannallah RS, Brennan M, Yarvitz JL, Hummer KA, Patel KM, He J, McCarter R. The effect of intranasal administration of remifentanil on intubating conditions and airway response after sevoflurane induction of anesthesia in children. Anesth Analg. 2008;107:1176–81.

    CAS  PubMed  Google Scholar 

  183. Buerkle H, Yaksh TL. Comparison of the spinal action of the mu-opioid remifentanil with alfentanil and morphine in the rat. Anesthesiology. 1996;84:94–102.

    CAS  PubMed  Google Scholar 

  184. Rosow CE, Gomery P, Chen TY, Stefanovich P, Stambler N, Israel R. Reversal of opioid-induced bladder dysfunction by intravenous naloxone and methylnaltrexone. Clin Pharmacol Ther. 2007;82:48–53.

    CAS  PubMed  Google Scholar 

  185. Taylor BK, Peterson MA, Basbaum AI. Early nociceptive events influence the temporal profile, but not the magnitude, of the tonic response to subcutaneous formalin: effects with remifentanil. J Pharmacol Exp Ther. 1997;280:876–83.

    CAS  PubMed  Google Scholar 

  186. Vinik HR, Kissin I. Rapid development of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg. 1998;86:1307–11.

    CAS  PubMed  Google Scholar 

  187. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P, Fletcher D, Chauvin M. Acute opioid tolerance intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93:409–17.

    CAS  PubMed  Google Scholar 

  188. Cortinez LI, Brandes V, Munoz HR, Guerrero ME, Muir M. No clinical evidence of acute opioid tolerance after remifentanil-based anaesthesia. Br J Anaesth. 2001;87:866–9.

    CAS  PubMed  Google Scholar 

  189. Levine AI, Bryson EO. Intranasal self-administration of remifentanil as the foray into opioid abuse by an anesthesia resident. Anesth Analg. 2010;110:524–5.

    CAS  PubMed  Google Scholar 

  190. Panlilio LV, Schindler CW. Self-administration of remifentanil, an ultra-short acting opioid, under continuous and progressive-ratio schedules of reinforcement in rats. Psychopharmacology (Berl). 2000;150:61–6.

    CAS  Google Scholar 

  191. Cooper ZD, Shi Y-G, Woods JH. Reinforcer-dependent enhancement of operant responding in opioid-withdrawn rats. Psychopharmacology (Berl). 2010;212:369–78.

    CAS  Google Scholar 

  192. Cooper ZD, Truong YN-T, Shi Y-G, Woods JH. Morphine deprivation increases self-administration of the fast- and short-acting-opioid receptor agonist remifentanil in the rat. J Pharmacol Exp Ther. 2008;326:920–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Crespo JA, Panililio LV, Schindler CW, Sturm K, Saria A, Gerald Z. Peri-response pharmacokinetics of remifentanil during a self-administration session indicates that neither blood nor brain levels are titrated. Ann N Y Acad Sci. 2006;1074:497–504.

    CAS  PubMed  Google Scholar 

  194. Panlilio LV, Thorndike EB, Schindler CW. Lorazepam reinstates punishment-suppressed remifentanil self-administration in rats. Psychopharmacology (Berl). 2005;179:374–82.

    CAS  Google Scholar 

  195. Woolverton WL, Wang Z, Vasterling T, Tallarida R. Self-administration of cocaine remifentanil mixtures by monkeys: an isobolographic analysis. Psychopharmacology (Berl). 2008;394:198–387.

    Google Scholar 

  196. Podlesnik CA, Ko MC, Winger G, Wichmann J, Prinssen EP, Woods JH. The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology (Berl). 2011;213:53–60.

    CAS  Google Scholar 

  197. Hutchinson MR, Northcutt AL, Hiranita T, Wang X, Lewis SS, Thomas J, van Steeg K, Kopajtic TA, Loram LC, Sfregola C, Galer E, Miles NE, Bland ST, Amat J, Rozeske RR, Maslanik T, Chapman TR, Strand KA, Fleshner M, Bachtell RK, Somogyi AA, Yin H, Katz JL, Rice KC, Maier SF, Watkins LR. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. 2012;32:11187–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2010;36:437–49.

    Google Scholar 

  199. Callaghan R, Riordan JR. Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J Biol Chem. 1993;268:16059–64.

    CAS  PubMed  Google Scholar 

  200. Dagenais C, Graff CL, Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004;67:269–76.

    CAS  PubMed  Google Scholar 

  201. Xie R. Hammarlund-Udenaes M, deBoer AG, deLange ECM: The role of P-glycoprotein in blood–brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (−/−) and mdr1a (+/+) mice. Br J Pharmacol. 1999;128:563–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. King M, Su W, Chang A, Zuckerman A, Pasternak GW. Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci. 2001;4:268–74.

    CAS  PubMed  Google Scholar 

  203. Su W, Pasternak GW. The role of multidrug resistance-associated protein in the blood–brain barrier and opioid analgesia. Synapse. 2013;67:609–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Thompson SJ, Koszdin K, Bernards CM. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology. 2000;92:1392–9.

    CAS  PubMed  Google Scholar 

  205. Tournier N, Decleves X, Saubamea B, Scherrmann JM, Cisternino S. Opioid transport by ATP-binding cassette transporters at the blood–brain barrier: implications for neuropsychopharmacology. Curr Pharm Des. 2011;17:2829–42.

    CAS  PubMed  Google Scholar 

  206. Mercer SL, Coop A. Opioid analgesics and P-glycoprotein efflux rransporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem. 2011;11:1157–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Seelbach MJ, Brooks TA, Egleton RD, Davis TP. Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J Neurochem. 2007;102:1677–90.

    CAS  PubMed  Google Scholar 

  208. McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, Ronaldson PT, Davis TP. P-glycoprotein trafficking at the blood–brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem. 2012;122:962–75.

    CAS  PubMed  Google Scholar 

  209. Levran O, O’Hara K, Peles E, Li D, Barral S, Ray B, Borg L, Ott J, Adelson M, Kreek MJ. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum Mol Genet. 2008;17:2219–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Campa D, Gioia A, Tomei A, Poli P, Barale R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008;83:559–66.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn A. Fairbanks Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fairbanks, C.A., Peterson, C.D. (2014). Biopharmaceutical Considerations of Opioid Analgesics in Models of Self-Administration: Review and Summary. In: Fairbanks, C., Martin, Ph.D., T. (eds) Neurobiological Studies of Addiction in Chronic Pain States. Contemporary Clinical Neuroscience, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1856-0_6

Download citation

Publish with us

Policies and ethics