Skip to main content

Malignant Peripheral Nerve Sheath Tumors

  • Chapter
  • First Online:
Molecular Pathology of Nervous System Tumors

Part of the book series: Molecular Pathology Library ((MPLB,volume 8))

  • 1972 Accesses

Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) (previously called neurogenic sarcomas, malignant schwannomas, or neurofibrosarcomas) are soft tissue sarcomas, which arise from a peripheral nerve or show nerve sheath differentiation. MPNSTs are associated with a high risk of local recurrence and predominantly hematogenous metastasis. They account for 10 % of all soft tissue sarcomas, and approximately half of these malignancies arise in patients with neurofibromatosis type 1 (NF1). MPNSTs occur in about 2–5 % of patients with NF1 compared with an incidence of 0.001 % in the general population. In contrast, in a large population-based longitudinal study the lifetime risk of developing an MPNST in NF1 was 8–13 %. In patients with NF1, the majority of MPNSTs arise in a previous clinically detectable plexiform neurofibroma, but MPNST may also develop as a primary tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 2002;62(5):1573–7.

    CAS  PubMed  Google Scholar 

  2. Woodruff JM. Pathology of tumors of the peripheral nerve sheath in type 1 neurofibromatosis. Am J Med Genet. 1999;89(1):23–30.

    CAS  PubMed  Google Scholar 

  3. Carli M, Ferrari A, Mattke A, et al. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. J Clin Oncol. 2005;23(33):8422–30.

    PubMed  Google Scholar 

  4. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39(5):311–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. King AA, Debaun MR, Riccardi VM, Gutmann DH. Malignant peripheral nerve sheath tumors in neurofibromatosis 1. Am J Med Genet. 2000;93(5):388–92.

    CAS  PubMed  Google Scholar 

  6. Zhou H, Coffin CM, Perkins SL, Tripp SR, Liew M, Viskochil DH. Malignant peripheral nerve sheath tumor: a comparison of grade, immunophenotype, and cell cycle/growth activation marker expression in sporadic and neurofibromatosis 1-related lesions. Am J Surg Pathol. 2003;27(10):1337–45.

    PubMed  Google Scholar 

  7. Fletcher CDM, Bridge JA, Hogendoorn PCW, editors. WHO classification of tumours of soft tissue and bone. Lyon: International Agency for Research on Cancer; 2013.

    Google Scholar 

  8. Rodriguez FJ, Folpe AL, Giannini C, Perry A. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 2012;123(3):295–319.

    PubMed Central  PubMed  Google Scholar 

  9. Stein-Wexler R. Pediatric soft tissue sarcomas. Semin Ultrasound CT MR. 2011;32(5):470–88.

    PubMed  Google Scholar 

  10. Evans DG, Birch JM, Ramsden RT, Sharif S, Baser ME. Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet. 2006;43(4):289–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Guo A, Liu A, Wei L, Song X. Malignant peripheral nerve sheath tumors: differentiation patterns and immunohistochemical features—a mini-review and our new findings. J Cancer. 2012;3:303–9.

    PubMed Central  PubMed  Google Scholar 

  12. Bernthal NM, Jones KB, Monument MJ, Liu T, Viskochil D, Randall RL. Lost in translation: ambiguity in nerve sheath tumor nomenclature and its resultant treatment effect. Cancer. 2013;5(2):519–28.

    CAS  Google Scholar 

  13. Costa J, Wesley RA, Glatstein E, Rosenberg SA. The grading of soft tissue sarcomas. Results of a clinicohistopathologic correlation in a series of 163 cases. Cancer. 1984;53(3):530–41.

    CAS  PubMed  Google Scholar 

  14. Trojani M, Contesso G, Coindre JM, et al. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer. 1984;33(1):37–42.

    CAS  PubMed  Google Scholar 

  15. Ferner RE, Golding JF, Smith M, et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol. 2008;19(2):390–4.

    CAS  PubMed  Google Scholar 

  16. Nielsen GP, Stemmer-Rachamimov AO, Ino Y, Moller MB, Rosenberg AE, Louis DN. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol. 1999;155(6):1879–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Beert E, Brems H, Daniels B, et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chromosomes Cancer. 2011;50(12):1021–32.

    CAS  PubMed  Google Scholar 

  18. Brekke HR, Kolberg M, Skotheim RI, et al. Identification of p53 as a strong predictor of survival for patients with malignant peripheral nerve sheath tumors. Neuro Oncol. 2009;11(5):514–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Li H, Velasco-Miguel S, Vass WC, Parada LF, DeClue JE. Epidermal growth factor receptor signaling pathways are associated with tumorigenesis in the Nf1:p53 mouse tumor model. Cancer Res. 2002;62(15):4507–13.

    CAS  PubMed  Google Scholar 

  20. Mertens F, Dal Cin P, De Wever I, et al. Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP study group. J Pathol. 2000;190(1):31–8.

    CAS  PubMed  Google Scholar 

  21. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35(10):e47–63.

    PubMed  Google Scholar 

  22. Rodriguez FJ, Stratakis CA, Evans DG. Genetic predisposition to peripheral nerve neoplasia: diagnostic criteria and pathogenesis of neurofibromatoses, Carney complex, and related syndromes. Acta Neuropathol. 2012;123(3):349–67.

    PubMed Central  PubMed  Google Scholar 

  23. Cormier JN, Pollock RE. Soft tissue sarcomas. CA Cancer J Clin. 2004;54(2):94–109.

    PubMed  Google Scholar 

  24. Kolberg M, Holand M, Agesen TH, et al. Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1. Neuro Oncol. 2013;15(2):135–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Messiaen LM, Callens T, Mortier G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat. 2000;15(6):541–55.

    CAS  PubMed  Google Scholar 

  26. Bottillo I, Ahlquist T, Brekke H, et al. Germline and somatic NF1 mutations in sporadic and NF1-associated malignant peripheral nerve sheath tumours. J Pathol. 2009;217(5):693–701.

    CAS  PubMed  Google Scholar 

  27. Wimmer K, Yao S, Claes K, et al. Spectrum of single- and multiexon NF1 copy number changes in a cohort of 1,100 unselected NF1 patients. Genes Chromosomes Cancer. 2006;45(3):265–76.

    CAS  PubMed  Google Scholar 

  28. Brekke HR, Ribeiro FR, Kolberg M, et al. Genomic changes in chromosomes 10, 16, and X in malignant peripheral nerve sheath tumors identify a high-risk patient group. J Clin Oncol. 2010;28(9):1573–82.

    PubMed  Google Scholar 

  29. Miller SJ, Rangwala F, Williams J, et al. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res. 2006;66(5):2584–91.

    CAS  PubMed  Google Scholar 

  30. Watson MA, Perry A, Tihan T, et al. Gene expression profiling reveals unique molecular subtypes of Neurofibromatosis Type I-associated and sporadic malignant peripheral nerve sheath tumors. Brain Pathol. 2004;14(3):297–303.

    CAS  PubMed  Google Scholar 

  31. Perrone F, Da Riva L, Orsenigo M, et al. PDGFRA, PDGFRB, EGFR, and downstream signaling activation in malignant peripheral nerve sheath tumor. Neuro Oncol. 2009;11(6):725–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Kourea HP, Orlow I, Scheithauer BW, Cordon-Cardo C, Woodruff JM. Deletions of the INK4A gene occur in malignant peripheral nerve sheath tumors but not in neurofibromas. Am J Pathol. 1999;155(6):1855–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Joseph NM, Mosher JT, Buchstaller J, et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell. 2008;13(2):129–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Subramanian S, Thayanithy V, West RB, et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J Pathol. 2010;220(1):58–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Holtkamp N, Atallah I, Okuducu AF, et al. MMP-13 and p53 in the progression of malignant peripheral nerve sheath tumors. Neoplasia. 2007;9(8):671–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Upadhyaya M, Kluwe L, Spurlock G, et al. Germline and somatic NF1 gene mutation spectrum in NF1-associated malignant peripheral nerve sheath tumors (MPNSTs). Hum Mutat. 2008;29(1):74–82.

    CAS  PubMed  Google Scholar 

  37. Verdijk RM, den Bakker MA, Dubbink HJ, Hop WC, Dinjens WN, Kros JM. TP53 mutation analysis of malignant peripheral nerve sheath tumors. J Neuropathol Exp Neurol. 2010;69(1):16–26.

    CAS  PubMed  Google Scholar 

  38. Thomas L, Mautner VF, Cooper DN, Upadhyaya M. Molecular heterogeneity in malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1. Hum Genomics. 2012;6:18.

    PubMed Central  PubMed  Google Scholar 

  39. Birindelli S, Perrone F, Oggionni M, et al. Rb and TP53 pathway alterations in sporadic and NF1-related malignant peripheral nerve sheath tumors. Lab Invest. 2001;81(6):833–44.

    CAS  PubMed  Google Scholar 

  40. Legius E, Dierick H, Wu R, et al. TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer. 1994;10(4):250–5.

    CAS  PubMed  Google Scholar 

  41. Menon AG, Anderson KM, Riccardi VM, et al. Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci U S A. 1990;87(14):5435–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lothe RA, Smith-Sorensen B, Hektoen M, et al. Biallelic inactivation of TP53 rarely contributes to the development of malignant peripheral nerve sheath tumors. Genes Chromosomes Cancer. 2001;30(2):202–6.

    CAS  PubMed  Google Scholar 

  43. Cichowski K, Shih TS, Schmitt E, et al. Mouse models of tumor development in neurofibromatosis type 1. Science. 1999;286(5447):2172–6.

    CAS  PubMed  Google Scholar 

  44. Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF. Mouse tumor model for neurofibromatosis type 1. Science. 1999;286(5447):2176–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Holtkamp N, Malzer E, Zietsch J, et al. EGFR and erbB2 in malignant peripheral nerve sheath tumors and implications for targeted therapy. Neuro Oncol. 2008;10(6):946–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Bradtmoller M, Hartmann C, Zietsch J, et al. Impaired Pten expression in human malignant peripheral nerve sheath tumours. PLoS One. 2012;7(11):e47595.

    PubMed Central  PubMed  Google Scholar 

  47. Gregorian C, Nakashima J, Dry SM, et al. PTEN dosage is essential for neurofibroma development and malignant transformation. Proc Natl Acad Sci U S A. 2009;106(46):19479–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Keng VW, Watson AL, Rahrmann EP, et al. Conditional inactivation of Pten with EGFR overexpression in Schwann cells models sporadic MPNST. Sarcoma. 2012;2012:620834.

    PubMed Central  PubMed  Google Scholar 

  49. Mantripragada KK, Spurlock G, Kluwe L, et al. High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res. 2008;14(4):1015–24.

    CAS  PubMed  Google Scholar 

  50. Mawrin C, Kirches E, Boltze C, Dietzmann K, Roessner A, Schneider-Stock R. Immunohistochemical and molecular analysis of p53, RB, and PTEN in malignant peripheral nerve sheath tumors. Virchows Arch. 2002;440(6):610–5.

    CAS  PubMed  Google Scholar 

  51. Wallace MR, Rasmussen SA, Lim IT, Gray BA, Zori RT, Muir D. Culture of cytogenetically abnormal schwann cells from benign and malignant NF1 tumors. Genes Chromosomes Cancer. 2000;27(2):117–23.

    CAS  PubMed  Google Scholar 

  52. Upadhyaya M, Spurlock G, Thomas L, et al. Microarray-based copy number analysis of neurofibromatosis type-1 (NF1)-associated malignant peripheral nerve sheath tumors reveals a role for Rho-GTPase pathway genes in NF1 tumorigenesis. Hum Mutat. 2012;33(4):763–76.

    CAS  PubMed  Google Scholar 

  53. Chai G, Liu N, Ma J, et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci. 2010;101(9):1997–2004.

    CAS  PubMed  Google Scholar 

  54. Perry A, Kunz SN, Fuller CE, et al. Differential NF1, p16, and EGFR patterns by interphase cytogenetics (FISH) in malignant peripheral nerve sheath tumor (MPNST) and morphologically similar spindle cell neoplasms. J Neuropathol Exp Neurol. 2002;61(8):702–9.

    CAS  PubMed  Google Scholar 

  55. Keizman D, Issakov J, Meller I, et al. Expression and significance of EGFR in malignant peripheral nerve sheath tumor. J Neurooncol. 2009;94(3):383–8.

    CAS  PubMed  Google Scholar 

  56. Tabone-Eglinger S, Bahleda R, Cote JF, et al. Frequent EGFR positivity and overexpression in high-grade areas of human MPNSTs. Sarcoma. 2008;2008:849156.

    PubMed Central  PubMed  Google Scholar 

  57. Byer SJ, Brossier NM, Peavler LT, et al. Malignant peripheral nerve sheath tumor invasion requires aberrantly expressed EGF receptors and is variably enhanced by multiple EGF family ligands. J Neuropathol Exp Neurol. 2013;72(3):219–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Badache A, De Vries GH. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J Cell Physiol. 1998;177(2):334–42.

    CAS  PubMed  Google Scholar 

  59. Holtkamp N, Okuducu AF, Mucha J, et al. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis. 2006;27(3):664–71.

    CAS  PubMed  Google Scholar 

  60. Fan Q, Yang J, Wang G. Clinical and molecular prognostic predictors of malignant peripheral nerve sheath tumor. Clin Transl Oncol. 2013;16:191–9.

    PubMed  Google Scholar 

  61. Torres KE, Zhu QS, Bill K, et al. Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clin Cancer Res. 2011;17(12):3943–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Albritton K, Rankin C, Coffin C, et al. Phase II trial of erlotinib in metastatic or unresectable malignant peripheral nerve sheath tumor (MPNST). Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings (Post-Meeting Edition). Vol 24, No 18S (June 20 Supplement), 2006: 9518.

    Google Scholar 

  63. Chugh R, Wathen JK, Maki RG, et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J Clin Oncol. 2009;27(19):3148–53.

    CAS  PubMed  Google Scholar 

  64. Maki RG, D’Adamo DR, Keohan ML, et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol. 2009;27(19):3133–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Schuetze S, Wathen S, Choy E, et al. Results of a Sarcoma Alliance for Research through Collaboration (SARC) phase II trial of dasatinib in previously treated, high-grade, advanced sarcoma. ASCO. 2010. J Clin Oncol. 2010;28:15s (suppl; abstr 10009).

    Google Scholar 

  66. Miller SJ, Jessen WJ, Mehta T, et al. Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med. 2009;1(4):236–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Carbonnelle-Puscian A, Vidal V, Laurendeau I, et al. SOX9 expression increases with malignant potential in tumors from patients with neurofibromatosis 1 and is not correlated to desert hedgehog. Hum Pathol. 2011;42(3):434–43.

    CAS  PubMed  Google Scholar 

  68. Pytel P, Karrison T, Can G, Tonsgard JH, Krausz T, Montag AG. Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development. Int J Surg Pathol. 2010;18(6):449–57.

    PubMed  Google Scholar 

  69. Miller SJ, Lan ZD, Hardiman A, et al. Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene. 2010;29(3):368–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Presneau N, Eskandarpour M, Shemais T, et al. MicroRNA profiling of peripheral nerve sheath tumours identifies miR-29c as a tumour suppressor gene involved in tumour progression. Br J Cancer. 2013;108(4):964–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Weng Y, Chen Y, Chen J, Liu Y, Bao T. Identification of serum microRNAs in genome-wide serum microRNA expression profiles as novel noninvasive biomarkers for malignant peripheral nerve sheath tumor diagnosis. Med Oncol. 2013;30(2):531.

    PubMed  Google Scholar 

  72. Kawai A, Kondo T, Suehara Y, Kikuta K, Hirohashi S. Global protein-expression analysis of bone and soft tissue sarcomas. Clin Orthop Relat Res. 2008;466(9):2099–106.

    PubMed Central  PubMed  Google Scholar 

  73. Dugu L, Hayashida S, Nakahara T, et al. Aberrant expression of tenascin-c and neuronatin in malignant peripheral nerve sheath tumors. Eur J Dermatol. 2010;20(5):580–4.

    PubMed  Google Scholar 

  74. Yan X, Takahara M, Dugu L, et al. Expression of cathepsin K in neurofibromatosis 1-associated cutaneous malignant peripheral nerve sheath tumors and neurofibromas. J Dermatol Sci. 2010;58(3):227–9.

    CAS  PubMed  Google Scholar 

  75. Gesundheit B, Parkin P, Greenberg M, et al. The role of angiogenesis in the transformation of plexiform neurofibroma into malignant peripheral nerve sheath tumors in children with neurofibromatosis type 1. J Pediatr Hematol Oncol. 2010;32(7):548–53.

    PubMed  Google Scholar 

  76. Cabibi D, Zerilli M, Caradonna G, Schillaci L, Belmonte B, Rodolico V. Diagnostic and prognostic value of CD10 in peripheral nerve sheath tumors. Anticancer Res. 2009;29(8):3149–55.

    CAS  PubMed  Google Scholar 

  77. Patel RM, Folpe AL. Immunohistochemistry for human telomerase reverse transcriptase catalytic subunit (hTERT): a study of 143 benign and malignant soft tissue and bone tumours. Pathology. 2009;41(6):527–32.

    PubMed  Google Scholar 

  78. Scaife CL, Pisters PW. Combined-modality treatment of localized soft tissue sarcomas of the extremities. Surg Oncol Clin N Am. 2003;12(2):355–68.

    PubMed  Google Scholar 

  79. Abbas JS, Holyoke ED, Moore R, Karakousis CP. The surgical treatment and outcome of soft-tissue sarcoma. Arch Surg. 1981;116(6):765–9.

    CAS  PubMed  Google Scholar 

  80. Ingham S, Huson SM, Moran A, Wylie J, Leahy M, Evans DG. Malignant peripheral nerve sheath tumours in NF1: improved survival in women and in recent years. Eur J Cancer. 2011;47(18):2723–8.

    PubMed  Google Scholar 

  81. Ren X, Wang J, Hu M, Jiang H, Yang J, Jiang Z. Clinical, radiological, and pathological features of 26 intracranial and intraspinal malignant peripheral nerve sheath tumors. J Neurosurg. 2013;119(3):695–708.

    PubMed  Google Scholar 

  82. Yu J, Deshmukh H, Payton JE, et al. Array-based comparative genomic hybridization identifies CDK4 and FOXM1 alterations as independent predictors of survival in malignant peripheral nerve sheath tumor. Clin Cancer Res. 2011;17(7):1924–34.

    CAS  PubMed  Google Scholar 

  83. Endo M, Yamamoto H, Setsu N, et al. Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors. Clin Cancer Res. 2013;19(2):450–61.

    CAS  PubMed  Google Scholar 

  84. Zehou O, Fabre E, Zelek L, et al. Chemotherapy for the treatment of malignant peripheral nerve sheath tumors in neurofibromatosis 1: a 10-year institutional review. Orphanet J Rare Dis. 2013;8:127.

    PubMed Central  PubMed  Google Scholar 

  85. Amirian ES, Goodman JC, New P, Scheurer ME. Pediatric and adult malignant peripheral nerve sheath tumors: an analysis of data from the surveillance, epidemiology, and end results program. J Neurooncol. 2014;116(3):609–16.

    PubMed  Google Scholar 

  86. Santoro A, Tursz T, Mouridsen H, et al. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: a randomized study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J Clin Oncol. 1995;13(7):1537–45.

    CAS  PubMed  Google Scholar 

  87. Verma S, Bramwell V. Dose-intensive chemotherapy in advanced adult soft tissue sarcoma. Expert Rev Anticancer Ther. 2002;2(2):201–15.

    CAS  PubMed  Google Scholar 

  88. Fernberg JO, Wiklund T, Monge O, et al. Chemotherapy in soft tissue sarcoma. The Scandinavian Sarcoma Group experience. Acta Orthop Scand Suppl. 1999;285:62–8.

    CAS  PubMed  Google Scholar 

  89. Donovan S, Shannon KM, Bollag G. GTPase activating proteins: critical regulators of intracellular signaling. Biochim Biophys Acta. 2002;1602(1):23–45.

    CAS  PubMed  Google Scholar 

  90. Dodd RD, Mito JK, Eward WC, et al. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Mol Cancer Ther. 2013;12:1906–17.

    CAS  PubMed  Google Scholar 

  91. Jessen WJ, Miller SJ, Jousma E, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013;123(1):340–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Bhola P, Banerjee S, Mukherjee J, et al. Preclinical in vivo evaluation of rapamycin in human malignant peripheral nerve sheath explant xenograft. Int J Cancer. 2010;126(2):563–71.

    CAS  PubMed  Google Scholar 

  93. Johannessen CM, Johnson BW, Williams SMG, et al. TORC1 is essential for NF1-associated malignancies. Curr Biol. 2008;18(1):56–62.

    CAS  PubMed  Google Scholar 

  94. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 2005;102(24):8573–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. De Raedt T, Walton Z, Yecies JL, et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell. 2011;20(3):400–13.

    PubMed Central  PubMed  Google Scholar 

  96. Slomiany MG, Dai L, Bomar PA, et al. Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res. 2009;69(12):4992–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Kohli L, Kaza N, Coric T, et al. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation. Cancer Res. 2013;73(14):4395–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Patel AV, Eaves D, Jessen WJ, et al. Ras-driven transcriptome analysis identifies aurora kinase A as a potential malignant peripheral nerve sheath tumor therapeutic target. Clin Cancer Res. 2012;18(18):5020–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Lopez G, Torres K, Liu J, et al. Autophagic survival in resistance to histone deacetylase inhibitors: novel strategies to treat malignant peripheral nerve sheath tumors. Cancer Res. 2011;71(1):185–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Wu J, Patmore DM, Jousma E, et al. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors. Oncogene. 2014;33(2):173–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Rahrmann EP, Watson AL, Keng VW, et al. Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet. 2013;45(7):756–66.

    CAS  PubMed  Google Scholar 

  102. Watson AL, Rahrmann EP, Moriarity BS, et al. Canonical Wnt/beta-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov. 2013;3(6):674–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Mo W, Chen J, Patel A, et al. CXCR4/CXCL12 mediate autocrine cell-cycle progression in NF1-associated malignant peripheral nerve sheath tumors. Cell. 2013;152(5):1077–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Maris JM, Wiersma SR, Mahgoub N, et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer. 1997;79:1438–46.

    CAS  PubMed  Google Scholar 

  105. Ohishi J, Aoki M, Nabeshima K, et al. Imatinib mesylate inhibits cell growth of malignant peripheral nerve sheath tumors in vitro and in vivo through suppression of PDGFR-beta. BMC Cancer. 2013;13:224.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Jiang W, Schnabel C, Spyra M, et al. Efficacy and selectivity of nilotinib on NF1-associated tumors in vitro. J Neurooncol. 2014;116(2):231–6.

    CAS  PubMed  Google Scholar 

  107. Sun D, Haddad R, Kraniak JM, Horne SD, Tainsky MA. RAS/MEK-independent gene expression reveals BMP2-related malignant phenotypes in the Nf1-deficient MPNST. Mol Cancer Res. 2013;11(6):616–27.

    CAS  PubMed  Google Scholar 

  108. Demestre M, Terzi MY, Mautner V, Vajkoczy P, Kurtz A, Pina AL. Effects of pigment epithelium derived factor (PEDF) on malignant peripheral nerve sheath tumours (MPNSTs). J Neurooncol. 2013;115(3):391–9.

    CAS  PubMed  Google Scholar 

  109. Chau V, Lim SK, Mo W, et al. Preclinical therapeutic efficacy of a novel pharmacologic inducer of apoptosis in malignant peripheral nerve sheath tumors. Cancer Res. 2014;74(2):586–97.

    CAS  PubMed  Google Scholar 

  110. Kaplan HG. Vemurafenib treatment of BRAF V600E-mutated malignant peripheral nerve sheath tumor. J Natl Compr Cancer Netw. 2013;11(12):1466–70.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Weiss M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiss, B., Sheil, A., Ratner, N. (2015). Malignant Peripheral Nerve Sheath Tumors. In: Karajannis, M., Zagzag, D. (eds) Molecular Pathology of Nervous System Tumors. Molecular Pathology Library, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1830-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1830-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1829-4

  • Online ISBN: 978-1-4939-1830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics