Skip to main content

Subependymal Giant Cell Astrocytoma

  • Chapter
  • First Online:
Molecular Pathology of Nervous System Tumors

Abstract

Subependymal giant cell astrocytomas (SEGAs) are benign tumors (WHO grade I) that occur almost exclusively in the setting of tuberous sclerosis (TS), a well-defined, multi-system genetic syndrome. Most commonly originating from the region of the caudate nucleus, these tumors may cause obstruction of cerebrospinal fluid circulation leading to hydrocephalus. Less frequently, they may hemorrhage spontaneously, causing precipitous neurological impairment [1]. Mutations of the TSC-1 and TSC-2 genes, both effectors of the mTOR pathway (originally mammalian Target of Rapamycin, now formally mechanistic Target of Rapamycin), lead to the variably expressed systemic manifestations of TS; cardiac rhabdomyoma, renal angiolipomas, facial adenoma sebaceum, cortical tubers of the brain, and SEGAs. The standard treatment of symptomatic or enlarging SEGAs is surgical excision. Pharmacological effectors of the mTOR pathway, rapamycin (aka sirolimus) and its analogs have recently been shown to induce rapid involution of SEGAs; however, the optimal timing, dosage, safety, and duration of treatment remain areas of active clinical research. SEGAs in the context of TS represent an example of an emerging paradigm: targeted molecular-oncologic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sterman H, Furlan AB, Matushita H, Teixeira MJ. Subependymal giant cell astrocytoma associated with tuberous sclerosis presenting with intratumoral bleeding. Case report and review of literature. Childs Nerv Syst. 2013;29:335–9.

    Article  PubMed  Google Scholar 

  2. Hahn JS, Bejar R, Gladson CL. Neonatal subependymal giant cell astrocytoma associated with tuberous sclerosis: MRI, CT, and ultrasound correlation. Neurology. 1991;41:124–8.

    Article  CAS  PubMed  Google Scholar 

  3. Oikawa S, Sakamoto K, Kobayashi N. A neonatal huge subependymal giant cell astrocytoma: case report. Neurosurgery. 1994;35:748–50.

    Article  CAS  PubMed  Google Scholar 

  4. Mirkin LD, Ey EH, Chaparro M. Congenital subependymal giant-cell astrocytoma: case report with prenatal ultrasonogram. Pediatr Radiol. 1999;29:776–80.

    Article  CAS  PubMed  Google Scholar 

  5. Nabbout R, Santos M, Rolland Y, Delalande O, Dulac O, Chiron C. Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J Neurol Neurosurg Psychiatry. 1999;66:370–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann N Y Acad Sci. 1991;615:125–7.

    Article  CAS  PubMed  Google Scholar 

  7. Braffman BH, Bilaniuk LT, Naidich TP, et al. MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology. 1992;183:227–38.

    Article  CAS  PubMed  Google Scholar 

  8. Kawahara I, Tsutsumi K, Hirose M, Matsuo Y, Yokoyama H. [Solitary subependymal giant cell astrocytoma: a forme fruste of tuberous sclerosis complex?]. No To Shinkei. 2004;56:585–91.

    PubMed  Google Scholar 

  9. Northrup H, Koenig MK, Au KS. Tuberous sclerosis complex. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. Gene reviews. Seattle: University of Washington; 1993. http://www.washington.edu/.

  10. Ichikawa T, Wakisaka A, Daido S, et al. A case of solitary subependymal giant cell astrocytoma: two somatic hits of TSC2 in the tumor, without evidence of somatic mosaicism. J Mol Diagn. 2005;7:544–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kashiwagi N, Yoshihara W, Shimada N, et al. Solitary subependymal giant cell astrocytoma: case report. Eur J Radiol. 2000;33:55–8.

    Article  CAS  PubMed  Google Scholar 

  12. Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest. 2011;121:1231–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17:1829–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121:179–93.

    Article  CAS  PubMed  Google Scholar 

  16. Lee DF, Kuo HP, Chen CT, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130:440–55.

    Article  CAS  PubMed  Google Scholar 

  17. Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126:955–68.

    Article  CAS  PubMed  Google Scholar 

  18. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53. Mol Cell. 2001;8:317–25.

    Article  CAS  PubMed  Google Scholar 

  20. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134:451–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta. 2009;1791:949–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273:14484–94.

    Article  CAS  PubMed  Google Scholar 

  23. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Dowling RJ, Topisirovic I, Alain T, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328:1172–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171–83.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412:179–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kalina P, Drehobl KE, Greenberg RW, Black KS, Hyman RA. Hemorrhagic subependymal giant cell astrocytoma. Pediatr Radiol. 1995;25:66–7.

    Article  CAS  PubMed  Google Scholar 

  28. Waga S, Yamamoto Y, Kojima T, Sakakura M. Massive hemorrhage in tumor of tuberous sclerosis. Surg Neurol. 1977;8:99–101.

    CAS  PubMed  Google Scholar 

  29. Stavrinou P, Spiliotopoulos A, Patsalas I, et al. Subependymal giant cell astrocytoma with intratumoral hemorrhage in the absence of tuberous sclerosis. J Clin Neurosci. 2008;15:704–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ogiwara H, Morota N. Subependymal giant cell astrocytoma with intratumoral hemorrhage. J Neurosurg Pediatr. 2013;11:469–72.

    Article  PubMed  Google Scholar 

  31. Mork SJ, Morild I, Giertsen JC. Subependymoma and unexpected death. Forensic Sci Int. 1986;30:275–80.

    Article  CAS  PubMed  Google Scholar 

  32. Roach ES, Smith M, Huttenlocher P, Bhat M, Alcorn D, Hawley L. Diagnostic criteria: tuberous sclerosis complex. Report of the Diagnostic Criteria Committee of the National Tuberous Sclerosis Association. J Child Neurol. 1992;7:221–4.

    Article  CAS  PubMed  Google Scholar 

  33. Dabora SL, Jozwiak S, Franz DN, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet. 2001;68:64–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Barkovich AJ. Pediatric neuroimaging. 3rd ed. Philadelphia: Lippincott, Williams & Wilkins; 2000.

    Google Scholar 

  35. Hussain N, Curran A, Pilling D, et al. Congenital subependymal giant cell astrocytoma diagnosed on fetal MRI. Arch Dis Child. 2006;91:520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Katz JS, Milla SS, Wiggins GC, Devinsky O, Weiner HL, Roth J. Intraventricular lesions in tuberous sclerosis complex: a possible association with the caudate nucleus. J Neurosurg Pediatr. 2012;9:406–13.

    Article  PubMed  Google Scholar 

  37. Di Rocco C, Iannelli A, Marchese E. On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg. 1995;23:115–21.

    Article  PubMed  Google Scholar 

  38. Osborn AG. Diagnostic neuroradiology. 1st ed. St. Louis: Mosby-Year Book; 1994.

    Google Scholar 

  39. Grajkowska W, Kotulska K, Jurkiewicz E, et al. Subependymal giant cell astrocytomas with atypical histological features mimicking malignant gliomas. Folia Neuropathol. 2011;49:39–46.

    PubMed  Google Scholar 

  40. Bollo RJ, Berliner JL, Fischer I, et al. Extraventricular subependymal giant cell tumor in a child with tuberous sclerosis complex. J Neurosurg Pediatr. 2009;4:85–90.

    Article  PubMed  Google Scholar 

  41. Dashti SR, Robinson S, Rodgers M, Cohen AR. Pineal region giant cell astrocytoma associated with tuberous sclerosis: case report. J Neurosurg. 2005;102:322–5.

    PubMed  Google Scholar 

  42. Jakobiec FA, Brodie SE, Haik B, Iwamoto T. Giant cell astrocytoma of the retina. A tumor of possible Mueller cell origin. Ophthalmology. 1983;90:1565–76.

    Article  CAS  PubMed  Google Scholar 

  43. Margo CE, Barletta JP, Staman JA. Giant cell astrocytoma of the retina in tuberous sclerosis. Retina. 1993;13:155–9.

    Article  CAS  PubMed  Google Scholar 

  44. Jung CS, Hubbard II GB, Grossniklaus HE. Giant cell astrocytoma of the retina in a 1-month-old infant. J Pediatr Ophthalmol Strabismus. 2009. doi:10.3928/01913913-20091019-05. Epub 2009 Nov 2.

  45. Telfeian AE, Judkins A, Younkin D, Pollock AN, Crino P. Subependymal giant cell astrocytoma with cranial and spinal metastases in a patient with tuberous sclerosis. Case report. J Neurosurg. 2004;100:498–500.

    Article  PubMed  Google Scholar 

  46. Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR. Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. 1996;91:368–75.

    Article  CAS  PubMed  Google Scholar 

  47. Roth J, Roach ES, Bartels U, et al. Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol. 2013;49:439–44.

    Article  PubMed  Google Scholar 

  48. Ekici MA, Kumandas S, Per H, et al. Surgical timing of the subependymal giant cell astrocytoma (SEGA) with the patients of tuberous sclerosis complex. Turk Neurosurg. 2011;21:315–24.

    PubMed  Google Scholar 

  49. de Ribaupierre S, Dorfmuller G, Bulteau C, et al. Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery. 2007;60:83–9; discussion 89–90.

    Article  PubMed  Google Scholar 

  50. Clarke MJ, Foy AB, Wetjen N, Raffel C. Imaging characteristics and growth of subependymal giant cell astrocytomas. Neurosurg Focus. 2006;20:E5.

    Article  PubMed  Google Scholar 

  51. Ibrahim I, Young CA, Larner AJ. Fornix damage from solitary subependymal giant cell astrocytoma causing postoperative amnesic syndrome. Br J Hosp Med (Lond). 2009;70:478–9.

    Article  CAS  Google Scholar 

  52. Jiang T, Jia G, Ma Z, Luo S, Zhang Y. The diagnosis and treatment of subependymal giant cell astrocytoma combined with tuberous sclerosis. Childs Nerv Syst. 2011;27:55–62.

    Article  CAS  PubMed  Google Scholar 

  53. Kotulska K, Borkowska J, Roszkowski M, et al. Surgical treatment of subependymal giant cell astrocytoma in tuberous sclerosis complex patients. Pediatr Neurol. 2014;50:307–12.

    Article  PubMed  Google Scholar 

  54. Harter DH, Bassani L, Rodgers SD, et al. A management strategy for intraventricular subependymal giant cell astrocytomas in tuberous sclerosis complex. J Neurosurg Pediatr. 2014;13:21–8.

    Article  PubMed  Google Scholar 

  55. Amin S, Carter M, Edwards RJ, et al. The outcome of surgical management of subependymal giant cell astrocytoma in tuberous sclerosis complex. Eur J Paediatr Neurol. 2013;17:36–44.

    Article  PubMed  Google Scholar 

  56. Lawton MT, Golfinos JG, Spetzler RF. The contralateral transcallosal approach: experience with 32 patients. Neurosurgery. 1996;39:729–34; discussion 734–5.

    Article  CAS  PubMed  Google Scholar 

  57. Moavero R, Pinci M, Bombardieri R, Curatolo P. The management of subependymal giant cell tumors in tuberous sclerosis: a clinician’s perspective. Childs Nerv Syst. 2011;27:1203–10.

    Article  PubMed  Google Scholar 

  58. Rodgers SD, Bassani L, Weiner HL, Harter DH. Stereotactic endoscopic resection and surgical management of a subependymal giant cell astrocytoma: case report. J Neurosurg Pediatr. 2012;9:417–20.

    Article  PubMed  Google Scholar 

  59. Sharma MC, Ralte AM, Gaekwad S, Santosh V, Shankar SK, Sarkar C. Subependymal giant cell astrocytoma–a clinicopathological study of 23 cases with special emphasis on histogenesis. Pathol Oncol Res. 2004;10:219–24.

    Article  PubMed  Google Scholar 

  60. Nagib MG, Haines SJ, Erickson DL, Mastri AR. Tuberous sclerosis: a review for the neurosurgeon. Neurosurgery. 1984;14:93–8.

    Article  CAS  PubMed  Google Scholar 

  61. Loewith R. A brief history of TOR. Biochem Soc Trans. 2011;39:437–42.

    Article  CAS  PubMed  Google Scholar 

  62. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.

    Article  CAS  PubMed  Google Scholar 

  63. Brunn GJ, Fadden P, Haystead TA, Lawrence Jr JC. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem. 1997;272:32547–50.

    Article  CAS  PubMed  Google Scholar 

  64. Birca A, Mercier C, Major P. Rapamycin as an alternative to surgical treatment of subependymal giant cell astrocytomas in a patient with tuberous sclerosis complex. J Neurosurg Pediatr. 2010;6:381–4.

    Article  PubMed  Google Scholar 

  65. Franz DN, Leonard J, Tudor C, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59:490–8.

    Article  CAS  PubMed  Google Scholar 

  66. Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381:125–32.

    Article  CAS  PubMed  Google Scholar 

  67. Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363:1801–11.

    Article  CAS  PubMed  Google Scholar 

  68. Franz DN, Agricola KD, Tudor CA, Krueger DA. Everolimus for tumor recurrence after surgical resection for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. J Child Neurol. 2013;28(5):602–7.

    Article  PubMed  Google Scholar 

  69. Kotulska K, Chmielewski D, Borkowska J, et al. Long-term effect of everolimus on epilepsy and growth in children under 3 years of age treated for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Eur J Paediatr Neurol. 2013;17(5):479–85.

    Article  PubMed  Google Scholar 

  70. Pengel LH, Liu LQ, Morris PJ. Do wound complications or lymphoceles occur more often in solid organ transplant recipients on mTOR inhibitors? A systematic review of randomized controlled trials. Transpl Int. 2011;24:1216–30.

    Article  CAS  PubMed  Google Scholar 

  71. Sivendran S, Agarwal N, Gartrell B, et al. Metabolic complications with the use of mTOR inhibitors for cancer therapy. Cancer Treat Rev. 2014;40(1):190–6.

    Article  CAS  PubMed  Google Scholar 

  72. Sini P, James D, Chresta C, Guichard S. Simultaneous inhibition of mTORC1 and mTORC2 by mTOR kinase inhibitor AZD8055 induces autophagy and cell death in cancer cells. Autophagy. 2010;6:553–4.

    Article  PubMed  Google Scholar 

  73. Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS. mTOR mediated anti-cancer drug discovery. Drug Discov Today Ther Strateg. 2009;6:47–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Park KJ, Kano H, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD. Gamma Knife surgery for subependymal giant cell astrocytomas. Clinical article. J Neurosurg. 2011;114:808–13.

    Article  PubMed  Google Scholar 

  75. Henderson MA, Fakiris AJ, Timmerman RD, Worth RM, Lo SS, Witt TC. Gamma knife stereotactic radiosurgery for low-grade astrocytomas. Stereotact Funct Neurosurg. 2009;87:161–7.

    Article  PubMed  Google Scholar 

  76. Park YG, Kim EY, Chang JW, Chung SS. Volume changes following gamma knife radiosurgery of intracranial tumors. Surg Neurol. 1997;48:488–93.

    Article  CAS  PubMed  Google Scholar 

  77. Matsumura H, Takimoto H, Shimada N, Hirata M, Ohnishi T, Hayakawa T. Glioblastoma following radiotherapy in a patient with tuberous sclerosis. Neurol Med Chir (Tokyo). 1998;38:287–91.

    Article  CAS  Google Scholar 

  78. Shepherd CW, Gomez MR. Mortality in the Mayo Clinic Tuberous Sclerosis Complex Study. Ann N Y Acad Sci. 1991;615:375–7.

    Article  CAS  PubMed  Google Scholar 

  79. Zaroff CM, Barr WB, Carlson C, et al. Mental retardation and relation to seizure and tuber burden in tuberous sclerosis complex. Seizure. 2006;15:558–62.

    Article  PubMed  Google Scholar 

  80. Kaczorowska M, Jurkiewicz E, Domanska-Pakiela D, et al. Cerebral tuber count and its impact on mental outcome of patients with tuberous sclerosis complex. Epilepsia. 2011;52:22–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zagzag MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harter, D.H., Weiner, H.L., Zagzag, D. (2015). Subependymal Giant Cell Astrocytoma. In: Karajannis, M., Zagzag, D. (eds) Molecular Pathology of Nervous System Tumors. Molecular Pathology Library, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1830-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1830-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1829-4

  • Online ISBN: 978-1-4939-1830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics