Skip to main content

Newer Pulmonary Function Tests

  • Chapter
  • First Online:
Diagnostic Tests in Pediatric Pulmonology

Abstract

The measurement of lung function is an integral component of respiratory medicine. In the past 10–15 years there has been significant progress in the development of newer lung function tests such that there are now standardized guidelines and commercially available equipment for some of these techniques. This chapter focuses on the forced oscillation technique, the interrupter technique and the multiple breath washout test and their application in preschool and school aged children and the potential role of these tests in the diagnosis and management of children with respiratory disease. A primary advantage of these tests is the relatively minimal level of cooperation that is required to obtained acceptable measurements thus making them ideally suited for use in children as young as 2–3 years of age. This creates opportunities to introduce objective measurements of respiratory function at a significantly younger age than previously possible. The aim of this chapter is to provide the reader with an overview of each of these tests and to summarize the evidence that these tests can be used to monitor changes in clinical status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubois AB, et al. Oscillation mechanics of lungs and chest in man. J Appl Physiol. 1956;8:587–94.

    CAS  PubMed  Google Scholar 

  2. Sly PD, et al. Measuring lung function in murine models of pulmonary disease. Drug Discov Today Dis Models. 2004;1:337–43.

    CAS  Google Scholar 

  3. Pillow JJ, et al. Partitioning of airway and parenchymal mechanics in unsedated newborn infants. Pediatr Res. 2005;58:1210–5.

    PubMed  Google Scholar 

  4. Wohl ME, et al. Resistance of the total respiratory system in healthy infants and infants with bronchiolitis. Pediatrics. 1969;43:495–509.

    CAS  PubMed  Google Scholar 

  5. Frey U, et al. High-frequency respiratory impedance measured by forced-oscillation technique in infants. Am J Respir Crit Care Med. 1998;158:363–70.

    CAS  PubMed  Google Scholar 

  6. Hall GL, et al. Altered respiratory tissue mechanics in asymptomatic wheezy infants. Am J Respir Crit Care Med. 2001;164:1387–91.

    CAS  PubMed  Google Scholar 

  7. Sly PD, et al. Measurement of low-frequency respiratory impedance in infants. Am J Respir Crit Care Med. 1996;154:161–6.

    CAS  PubMed  Google Scholar 

  8. Beydon N, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175:1304–45.

    PubMed  Google Scholar 

  9. Oostveen E, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22:1026–41.

    CAS  PubMed  Google Scholar 

  10. Bates JHT, et al. Oscillation mechanics of the respiratory system. Compr Physiol. 2011;1:1233–72.

    PubMed  Google Scholar 

  11. Petak F, et al. Airway and tissue mechanics in anesthetized paralyzed children. Pediatr Pulmonol. 2003;35:169–76.

    PubMed  Google Scholar 

  12. Farre R, et al. A system to generate simultaneous forced oscillation and continuous positive airway pressure. Eur Respir J. 1997;10:1349–53.

    CAS  PubMed  Google Scholar 

  13. Macintyre N, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26:720–35.

    CAS  PubMed  Google Scholar 

  14. Miller MR, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.

    CAS  PubMed  Google Scholar 

  15. Wanger J, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511–22.

    CAS  PubMed  Google Scholar 

  16. Cauberghs M, Van de Woestijne KP. Effect of upper airway shunt and series properties on respiratory impedance measurements. J Appl Physiol. 1989;66:2274–9.

    CAS  PubMed  Google Scholar 

  17. Peslin R, et al. Respiratory impedance measured with head generator to minimize upper airway shunt. J Appl Physiol. 1985;59:1790–5.

    CAS  PubMed  Google Scholar 

  18. Goldman MD, et al. Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol. 2005;148:179–94.

    PubMed  Google Scholar 

  19. Gangell CL, et al. Respiratory impedance in children with cystic fibrosis using forced oscillations in clinic. Eur Respir J. 2007;30:892–7.

    CAS  PubMed  Google Scholar 

  20. Udomittipong K, et al. Forced oscillations in the clinical setting in young children with neonatal lung disease. Eur Respir J. 2008;31:1292–9.

    CAS  PubMed  Google Scholar 

  21. Lall CA, et al. Airway resistance variability and response to bronchodilator in children with asthma. Eur Respir J. 2007;30:260–8.

    CAS  PubMed  Google Scholar 

  22. Harrison J, et al. Lung function in preschool children with a history of wheezing measured by forced oscillation and plethysmographic specific airway resistance. Pediatr Pulmonol. 2010;45:1049–56.

    PubMed  Google Scholar 

  23. Hall GL, et al. Respiratory function in healthy young children using forced oscillations. Thorax. 2007;62:521–6.

    PubMed Central  PubMed  Google Scholar 

  24. Klug B, Bisgaard H. Specific airway resistance, interrupter resistance, and respiratory impedance in healthy children aged 2–7 years. Pediatr Pulmonol. 1998;25:322–31.

    CAS  PubMed  Google Scholar 

  25. Malmberg LP, et al. Determinants of respiratory system input impedance and bronchodilator response in healthy Finnish preschool children. Clin Physiol Funct Imaging. 2002;22:64–71.

    CAS  PubMed  Google Scholar 

  26. Nielsen KG, et al. Serial lung function and responsiveness in cystic fibrosis during early childhood. Am J Respir Crit Care Med. 2004;169:1209–16.

    PubMed  Google Scholar 

  27. Calogero C, et al. Respiratory impedance and bronchodilator responsiveness in healthy children aged 2–13 years. Pediatr Pulmonol. 2013;48(7):707–15.

    PubMed  Google Scholar 

  28. Dencker M, et al. Reference values for respiratory system impedance by using impulse oscillometry in children aged 2–11 years. Clin Physiol Funct Imaging. 2006;26:247–50.

    CAS  PubMed  Google Scholar 

  29. Frei J, et al. Impulse oscillometry: reference values in children 100 to 150 cm in height and 3 to 10 years of age. Chest. 2005;128:1266–73.

    PubMed  Google Scholar 

  30. Shackleton C, et al. Reference ranges for Mexican preschool-aged children using the forced oscillation technique. Arch Bronconeumol. 2013;49:326–9.

    PubMed  Google Scholar 

  31. Amra B, et al. Respiratory resistance by impulse oscillometry in healthy Iranian children aged 5–19 years. Iran J Allergy Asthma Immunol. 2008;7:25–9.

    PubMed  Google Scholar 

  32. Lee JY, et al. Reference values of impulse oscillometry and its utility in the diagnosis of asthma in young Korean children. J Asthma. 2012;49:811–6.

    PubMed  Google Scholar 

  33. Vu LT, et al. Respiratory impedance and response to salbutamol in healthy Vietnamese children. Pediatr Pulmonol. 2008;43:1013–9.

    PubMed  Google Scholar 

  34. Rosenfeld M, et al. An Official American Thoracic Society Workshop report: optimal lung function tests for monitoring cystic fibrosis, bronchopulmonary dysplasia and recurrent wheezing in children <6 years of age. Ann Am Thorac Soc. 2013;10:S1–11.

    PubMed  Google Scholar 

  35. Hellinckx J, et al. Bronchodilator response in 3–6.5 years old healthy and stable asthmatic children. Eur Respir J. 1998;12:438–43.

    CAS  PubMed  Google Scholar 

  36. Nielsen KG, Bisgaard H. Discriminative capacity of bronchodilator response measured with three different lung function techniques in asthmatic and healthy children aged 2 to 5 years. Am J Respir Crit Care Med. 2001;164:554–9.

    CAS  PubMed  Google Scholar 

  37. Thamrin C, et al. Assessment of bronchodilator responsiveness in preschool children using forced oscillations. Thorax. 2007;62:814–9.

    PubMed Central  PubMed  Google Scholar 

  38. Komarow HD, et al. A study of the use of impulse oscillometry in the evaluation of children with asthma: analysis of lung parameters, order effect, and utility compared with spirometry. Pediatr Pulmonol. 2012;47:18–26.

    PubMed Central  PubMed  Google Scholar 

  39. Oostveen E, et al. Lung function and bronchodilator response in 4-year-old children with different wheezing phenotypes. Eur Respir J. 2010;35:865–72.

    CAS  PubMed  Google Scholar 

  40. Shin YH, et al. Oscillometric and spirometric bronchodilator response in preschool children with and without asthma. Can Respir J. 2012;19:273–7.

    PubMed Central  PubMed  Google Scholar 

  41. Vu LT, et al. Respiratory impedance and response to salbutamol in asthmatic Vietnamese children. Pediatr Pulmonol. 2010;45:380–6.

    PubMed  Google Scholar 

  42. Shi Y, et al. Peripheral airway impairment measured by oscillometry predicts loss of asthma control in children. J Allergy Clin Immunol. 2013;131:718–23.

    PubMed  Google Scholar 

  43. Brennan S, et al. Correlation of forced oscillation technique in preschool children with cystic fibrosis with pulmonary inflammation. Thorax. 2005;60:159–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ren CL, et al. Analysis of the associations between lung function and clinical features in preschool children with cystic fibrosis. Pediatr Pulmonol. 2012;47:574–81.

    PubMed  Google Scholar 

  45. Yammine S, et al. Impact of different breathing protocols on multiple-breath washout outcomes in children. J Cyst Fibros. 2014;13:190–7.

    PubMed  Google Scholar 

  46. Mazurek HK, et al. Specificity and sensitivity of respiratory impedance in assessing reversibility of airway obstruction in children. Chest. 1995;107:996–1002.

    CAS  PubMed  Google Scholar 

  47. Lebecque P, Stanescu D. Respiratory resistance by the forced oscillation technique in asthmatic children and cystic fibrosis patients. Eur Respir J. 1997;10:891–5.

    CAS  PubMed  Google Scholar 

  48. Kerby GS, et al. Lung function distinguishes preschool children with CF from healthy controls in a multi-center setting. Pediatr Pulmonol. 2012;47:597–605.

    PubMed  Google Scholar 

  49. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.

    CAS  PubMed  Google Scholar 

  50. Vrijlandt EJ, et al. Respiratory health in prematurely born preschool children with and without bronchopulmonary dysplasia. J Pediatr. 2007;150:256–61.

    CAS  PubMed  Google Scholar 

  51. Kent L, et al. Lung clearance index: evidence for use in clinical trials in cystic fibrosis. J Cyst Fibros. 2014;13:123–38.

    PubMed  Google Scholar 

  52. Harrison J, et al. Lung function in children with repaired tracheo-oesophageal fistula using the forced oscillation technique. Pediatr Pulmonol. 2010;45:1057–63.

    PubMed  Google Scholar 

  53. Hoijer U, et al. The ability of noninvasive methods to detect and quantify laryngeal obstruction. Eur Respir J. 1991;4:109–14.

    CAS  PubMed  Google Scholar 

  54. Rigau J, et al. Oscillometric assessment of airway obstruction in a mechanical model of vocal cord dysfunction. J Biomech. 2004;37:37–43.

    PubMed  Google Scholar 

  55. Siri WE. A mass spectroscope for analysis in the low mass range. Rev Sci Instrum. 1947;18:540.

    CAS  Google Scholar 

  56. Lilly JC. Mixing of gases within respiratory system with a new type nitrogen meter. Am J Physiol. 1950;161:342–51.

    CAS  PubMed  Google Scholar 

  57. Paiva M. Gas transport in the human lung. J Appl Physiol. 1973;35:401–10.

    CAS  PubMed  Google Scholar 

  58. Aurora P, et al. Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am J Respir Crit Care Med. 2005;171:249–56.

    PubMed  Google Scholar 

  59. Fuchs SI, et al. A novel sidestream ultrasonic flow sensor for multiple breath washout in children. Pediatr Pulmonol. 2008;43:731–8.

    PubMed  Google Scholar 

  60. Gustafsson PM, et al. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur Respir J. 2003;22:972–9.

    CAS  PubMed  Google Scholar 

  61. Macleod KA, et al. Ventilation heterogeneity in children with well controlled asthma with normal spirometry indicates residual airways disease. Thorax. 2009;64:33–7.

    CAS  PubMed  Google Scholar 

  62. Robinson PD, et al. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur Respir J. 2013;41:507–22.

    CAS  PubMed  Google Scholar 

  63. Singer F, et al. A realistic validation study of a new nitrogen multiple-breath washout system. PLoS One. 2012;7:e36083.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Wall MA. Moment analysis of multibreath nitrogen washout in young children. J Appl Physiol. 1985;59:274–9.

    CAS  PubMed  Google Scholar 

  65. Kraemer R, Meister B. Fast real-time moment-ratio analysis of multibreath nitrogen washout in children. J Appl Physiol. 1985;59:1137–44.

    CAS  PubMed  Google Scholar 

  66. Hjalmarson O, Sandberg K. Abnormal lung function in healthy preterm infants. Am J Respir Crit Care Med. 2002;165:83–7.

    PubMed  Google Scholar 

  67. Schibler A, et al. Moment ratio analysis of multiple breath nitrogen washout in infants with lung disease. Eur Respir J. 2000;15:1094–101.

    CAS  PubMed  Google Scholar 

  68. Schibler A, et al. Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J. 2002;20:912–8.

    CAS  PubMed  Google Scholar 

  69. Aurora P, et al. Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax. 2004;59:1068–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Lum S, et al. Early detection of cystic fibrosis lung disease: multiple-breath washout versus raised volume tests. Thorax. 2007;62:341–7.

    PubMed Central  PubMed  Google Scholar 

  71. Robinson PD, et al. Abbreviated multi-breath washout for calculation of lung clearance index. Pediatr Pulmonol. 2013;48:336–43.

    PubMed  Google Scholar 

  72. Yammine S, et al. Multiple-breath washout measurements can be significantly shortened in children. Thorax. 2013;68:586–7.

    PubMed  Google Scholar 

  73. Gray DM, Willemse L, Alberts A, Simpson S, Sly PD, Hall GL, Zar HJ. Lung function in African infants: a pilot study. Pediatr Pulmonol. DOI 10.1002/ppul.22965. 2013.

  74. Singer F, et al. Practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediatr Pulmonol. 2013;48:739–46.

    PubMed  Google Scholar 

  75. Fowler WS. Lung function studies; the respiratory dead space. Am J Physiol. 1948;154:405–16.

    CAS  PubMed  Google Scholar 

  76. Langley F, et al. Ventilatory consequences of unilateral pulmonary artery occlusion. Les Colloques des l’Institut National de la Sante’ et de la Recherche Me’dicale. 1975;51:209–12.

    Google Scholar 

  77. Bouhuys A. Pulmonary nitrogen clearance in relation to age in healthy males. J Appl Physiol. 1963;18:297–300.

    CAS  PubMed  Google Scholar 

  78. Saidel GM, et al. Moment analysis of multibreath lung washout. J Appl Physiol. 1975;38:328–34.

    CAS  PubMed  Google Scholar 

  79. Paiva M. Two new pulmonary functional indexes suggested by a simple mathematical model. Respiration. 1975;32:389–403.

    CAS  PubMed  Google Scholar 

  80. Robinson PD, et al. Inert gas washout: theoretical background and clinical utility in respiratory disease. Respiration. 2009;78:339–55.

    PubMed  Google Scholar 

  81. Shao H, et al. Impaired gas mixing and low lung volume in preterm infants with mild chronic lung disease. Pediatr Res. 1998;43:536–41.

    CAS  PubMed  Google Scholar 

  82. Paiva M, et al. Slope of phase III in multibreath nitrogen washout and washin. Bull Eur Physiopathol Respir. 1982;18:273–80.

    CAS  PubMed  Google Scholar 

  83. Verbanck S, Paiva M. Model simulations of gas mixing and ventilation distribution in the human lung. J Appl Physiol. 1990;69:2269–79.

    CAS  PubMed  Google Scholar 

  84. Dutrieue B, et al. A human acinar structure for simulation of realistic alveolar plateau slopes. J Appl Physiol. 2000;89:1859–67.

    CAS  PubMed  Google Scholar 

  85. Paiva M, Engel LA. Model analysis of gas distribution within human lung acinus. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:418–25.

    CAS  PubMed  Google Scholar 

  86. Verbanck S, et al. Ventilation distribution during histamine provocation. J Appl Physiol. 1997;83:1907–16.

    CAS  PubMed  Google Scholar 

  87. Cumming G, et al. The influence of gaseous diffusion on the alveolar plateau at different lung volumes. Respir Physiol. 1967;2:386–98.

    CAS  PubMed  Google Scholar 

  88. Fowler WS. Lung function studies; uneven pulmonary ventilation in normal subjects and in patients with pulmonary disease. J Appl Physiol. 1949;2:283–99.

    CAS  PubMed  Google Scholar 

  89. Jones JG. The effect of preinspiratory lung volume on the result of the single breath O2 test. Respir Physiol. 1967;2:375–85.

    CAS  PubMed  Google Scholar 

  90. Crawford AB, et al. Effect of airway closure on ventilation distribution. J Appl Physiol. 1989;66:2511–5.

    CAS  PubMed  Google Scholar 

  91. Crawford AB, et al. Effect of lung volume on ventilation distribution. J Appl Physiol. 1989;66:2502–10.

    CAS  PubMed  Google Scholar 

  92. Lacquet LM, van Muylem A. He and SF6 single-breath expiration curves. Comparison with the paiva-engel model. Bull Eur Physiopathol Respir. 1982;18:239–46.

    CAS  PubMed  Google Scholar 

  93. Crawford AB, et al. Effect of tidal volume on ventilation maldistribution. Respir Physiol. 1986;66:11–25.

    CAS  PubMed  Google Scholar 

  94. Gronkvist M, et al. Effects of body posture and tidal volume on inter- and intraregional ventilation distribution in healthy men. J Appl Physiol. 2002;92:634–42.

    PubMed  Google Scholar 

  95. Hulskamp G, et al. Association of prematurity, lung disease and body size with lung volume and ventilation inhomogeneity in unsedated neonates: a multicentre study. Thorax. 2009;64:240–5.

    CAS  PubMed  Google Scholar 

  96. Latzin P, et al. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants. PLoS One. 2009;4:e4635.

    PubMed Central  PubMed  Google Scholar 

  97. Fuchs SI, et al. Lung clearance index: normal values, repeatability, and reproducibility in healthy children and adolescents. Pediatr Pulmonol. 2009;44:1180–5.

    PubMed  Google Scholar 

  98. Lum S, et al. Age and height dependence of lung clearance index and functional residual capacity. Eur Respir J. 2013;41(6):1371–7.

    PubMed  Google Scholar 

  99. Houltz B, et al. Tidal N2 washout ventilation inhomogeneity indices in a reference population aged 7–70 years. Eur Respir J. 2012;40:694s.

    Google Scholar 

  100. van Beek EJ, et al. Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-Helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol. 2007;17:1018–24.

    PubMed  Google Scholar 

  101. Hamutcu R, et al. Clinical findings and lung pathology in children with cystic fibrosis. Am J Respir Crit Care Med. 2002;165:1172–5.

    PubMed  Google Scholar 

  102. Horsley AR, et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax. 2008;63:135–40.

    CAS  PubMed  Google Scholar 

  103. Gustafsson PM, et al. Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax. 2008;63:129–34.

    CAS  PubMed  Google Scholar 

  104. Owens CM, et al. Lung clearance index and HRCT are complementary markers of lung abnormalities in young children with CF. Thorax. 2011;66:481–8.

    CAS  PubMed  Google Scholar 

  105. Ellemunter H, et al. Sensitivity of lung clearance index and chest computed tomography in early CF lung disease. Respir Med. 2010;104:1834–42.

    PubMed  Google Scholar 

  106. Hall GL, et al. Air trapping on chest CT is associated with worse ventilation distribution in infants with cystic fibrosis diagnosed following newborn screening. PLoS One. 2011;6:e23932.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Aurora P, et al. Lung clearance index at 4 years predicts subsequent lung function in children with cystic fibrosis. Am J Respir Crit Care Med. 2011;183:752–8.

    PubMed  Google Scholar 

  108. Robinson PD, et al. Using index of ventilation to assess response to treatment for acute pulmonary exacerbation in children with cystic fibrosis. Pediatr Pulmonol. 2009;44:733–42.

    PubMed  Google Scholar 

  109. Amin R, et al. Hypertonic saline improves the LCI in paediatric CF patients with normal lung function. Thorax. 2010;65:379–83.

    PubMed  Google Scholar 

  110. Amin R, et al. The effect of dornase alfa on ventilation inhomogeneity in patients with cystic fibrosis. Eur Respir J. 2011;37:806–12.

    CAS  PubMed  Google Scholar 

  111. Hamid Q, et al. Inflammation of small airways in asthma. J Allergy Clin Immunol. 1997;100:44–51.

    CAS  PubMed  Google Scholar 

  112. Carroll N, et al. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis. 1993;147:405–10.

    CAS  PubMed  Google Scholar 

  113. Venegas JG, et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature. 2005;434:777–82.

    CAS  PubMed  Google Scholar 

  114. Saniie J, et al. Real-time moment analysis of pulmonary nitrogen washout. J Appl Physiol. 1979;46:1184–90.

    CAS  PubMed  Google Scholar 

  115. Gustafsson PM, et al. Peripheral airway involvement in asthma assessed by single-breath SF6 and He washout. Eur Respir J. 2003;21:1033–9.

    CAS  PubMed  Google Scholar 

  116. Gustafsson PM, et al. Pneumotachographic nitrogen washout method for measurement of the volume of trapped gas in the lungs. Pediatr Pulmonol. 1994;17:258–68.

    CAS  PubMed  Google Scholar 

  117. Downie SR, et al. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62:684–9.

    PubMed Central  PubMed  Google Scholar 

  118. Sonnappa S, et al. Symptom-pattern phenotype and pulmonary function in preschool wheezers. J Allergy Clin Immunol. 2010;126:519–26.

    PubMed  Google Scholar 

  119. Aljassim F, et al. A whisper from the silent lung zone. Pediatr Pulmonol. 2009;44:829–32.

    PubMed  Google Scholar 

  120. Verbanck S, et al. The functional benefit of anti-inflammatory aerosols in the lung periphery. J Allergy Clin Immunol. 2006;118:340–6.

    CAS  PubMed  Google Scholar 

  121. Wauer RR, et al. Assessment of functional residual capacity using nitrogen washout and plethysmographic techniques in infants with and without bronchopulmonary dysplasia. Intensive Care Med. 1998;24:469–75.

    CAS  PubMed  Google Scholar 

  122. Adams AM, et al. Measurement and repeatability of interrupter resistance in unsedated newborn infants. Pediatr Pulmonol. 2009;44:1168–73.

    CAS  PubMed  Google Scholar 

  123. Chavasse RJ, et al. Comparison of resistance measured by the interrupter technique and by passive mechanics in sedated infants. Eur Respir J. 2001;18:330–4.

    CAS  PubMed  Google Scholar 

  124. Fuchs O, et al. Normative data for lung function and exhaled nitric oxide in unsedated healthy infants. Eur Respir J. 2011;37:1208–16.

    CAS  PubMed  Google Scholar 

  125. Gochicoa LG, et al. Reference values for airway resistance in newborns, infants and preschoolers from a Latin American population. Respirology. 2012;17:667–73.

    PubMed  Google Scholar 

  126. Hall GL, et al. Evaluation of the interrupter technique in healthy, unsedated infants. Eur Respir J. 2001;18:982–8.

    CAS  PubMed  Google Scholar 

  127. Lanteri CJ, Sly PD. Changes in respiratory mechanics with age. J Appl Physiol. 1993;74:369–78.

    CAS  PubMed  Google Scholar 

  128. Sly PD, Bates JH. Computer analysis of physical factors affecting the use of the interrupter technique in infants. Pediatr Pulmonol. 1988;4:219–24.

    CAS  PubMed  Google Scholar 

  129. Bridge PD, et al. Measurement of airway resistance using the interrupter technique in preschool children in the ambulatory setting. Eur Respir J. 1999;13:792–6.

    CAS  PubMed  Google Scholar 

  130. McKenzie SA, et al. Airway resistance and atopy in preschool children with wheeze and cough. Eur Respir J. 2000;15:833–8.

    CAS  PubMed  Google Scholar 

  131. Nielsen KG, Bisgaard H. The effect of inhaled budesonide on symptoms, lung function, and cold air and methacholine responsiveness in 2- to 5-year-old asthmatic children. Am J Respir Crit Care Med. 2000;162:1500–6.

    CAS  PubMed  Google Scholar 

  132. Lombardi E, et al. Reference values of interrupter respiratory resistance in healthy preschool white children. Thorax. 2001;56:691–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Merkus PJ, et al. Interrupter resistance in preschool children: measurement characteristics and reference values. Am J Respir Crit Care Med. 2001;163:1350–5.

    CAS  PubMed  Google Scholar 

  134. Bisgaard H, Klug B. Lung function measurement in awake young children. Eur Respir J. 1995;8:2067–75.

    CAS  PubMed  Google Scholar 

  135. Oswald-Mammosser M, et al. The opening interrupter technique for respiratory resistance measurements in children. Respirology. 2010;15:1104–10.

    PubMed  Google Scholar 

  136. Bates JH, et al. A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol. 1988;64:2204–14.

    CAS  PubMed  Google Scholar 

  137. Bates JH, et al. Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol. 1988;65:408–14.

    CAS  PubMed  Google Scholar 

  138. Oswald-Mammosser M, et al. Measurements of respiratory system resistance by the interrupter technique in healthy and asthmatic children. Pediatr Pulmonol. 1997;24:78–85.

    CAS  PubMed  Google Scholar 

  139. Thamrin C, Frey U. Effect of bacterial filter on measurement of interrupter resistance in preschool and school-aged children. Pediatr Pulmonol. 2008;43:781–7.

    CAS  PubMed  Google Scholar 

  140. Phagoo SB, et al. Accuracy and sensitivity of the interrupter technique for measuring the response to bronchial challenge in normal subjects. Eur Respir J. 1993;6:996–1003.

    CAS  PubMed  Google Scholar 

  141. Phagoo SB, et al. Evaluation of the interrupter technique for measuring change in airway resistance in 5-year-old asthmatic children. Pediatr Pulmonol. 1995;20:387–95.

    CAS  PubMed  Google Scholar 

  142. Beydon N, et al. Pulmonary function tests in preschool children with cystic fibrosis. Am J Respir Crit Care Med. 2002;166:1099–104.

    PubMed  Google Scholar 

  143. Beydon N, et al. Pre/postbronchodilator interrupter resistance values in healthy young children. Am J Respir Crit Care Med. 2002;165:1388–94.

    PubMed  Google Scholar 

  144. Beydon N, et al. Baseline and post-bronchodilator interrupter resistance and spirometry in asthmatic children. Pediatr Pulmonol. 2012;47:987–93.

    PubMed  Google Scholar 

  145. Beydon N, et al. Interrupter resistance short-term repeatability and bronchodilator response in preschool children. Respir Med. 2007;101:2482–7.

    PubMed  Google Scholar 

  146. Beelen RM, et al. Short and long term variability of the interrupter technique under field and standardised conditions in 3–6 year old children. Thorax. 2003;58:761–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Chan EY, et al. Repeatability of airway resistance measurements made using the interrupter technique. Thorax. 2003;58:344–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. McKenzie SA, et al. Airway resistance measured by the interrupter technique: normative data for 2–10 year olds of three ethnicities. Arch Dis Child. 2002;87:248–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Li AM, et al. Interrupter respiratory resistance in healthy Chinese preschool children. Chest. 2009;136:554–60.

    PubMed  Google Scholar 

  150. Rech VV, et al. Airway resistance in children measured using the interrupter technique: reference values. J Bras Pneumol. 2008;34:796–803.

    PubMed  Google Scholar 

  151. Merkus PJ, et al. Reference ranges for interrupter resistance technique: the Asthma UK Initiative. Eur Respir J. 2010;36:157–63.

    CAS  PubMed  Google Scholar 

  152. Beydon N, et al. Pulmonary function tests in preschool children with asthma. Am J Respir Crit Care Med. 2003;168:640–4.

    PubMed  Google Scholar 

  153. Mele L, et al. Assessment and validation of bronchodilation using the interrupter technique in preschool children. Pediatr Pulmonol. 2010;45:633–8.

    PubMed  Google Scholar 

  154. Kooi EM, et al. Fluticasone or Montelukast for preschool children with asthma-like symptoms: randomized controlled trial. Pulm Pharmacol Ther. 2008;21:798–804.

    CAS  PubMed  Google Scholar 

  155. Pao CS, McKenzie SA. Randomized controlled trial of fluticasone in preschool children with intermittent wheeze. Am J Respir Crit Care Med. 2002;166:945–9.

    PubMed  Google Scholar 

  156. Schokker S, et al. Inhaled corticosteroids for recurrent respiratory symptoms in preschool children in general practice: randomized controlled trial. Pulm Pharmacol Ther. 2008;21:88–97.

    CAS  PubMed  Google Scholar 

  157. Carter ER, et al. Evaluation of the interrupter technique for the use of assessing airway obstruction in children. Pediatr Pulmonol. 1994;17:211–7.

    CAS  PubMed  Google Scholar 

  158. Davies PL, et al. The interrupter technique to assess airway responsiveness in children with cystic fibrosis. Pediatr Pulmonol. 2007;42:23–8.

    PubMed  Google Scholar 

  159. Oswald-Mammosser M, et al. Interrupter technique versus plethysmography for measurement of respiratory resistance in children with asthma or cystic fibrosis. Pediatr Pulmonol. 2000;29:213–20.

    CAS  PubMed  Google Scholar 

  160. Terheggen-Lagro SW, et al. Radiological and functional changes over 3 years in young children with cystic fibrosis. Eur Respir J. 2007;30:279–85.

    CAS  PubMed  Google Scholar 

  161. Kairamkonda VR, et al. Lung function measurement in prematurely born preschool children with and without chronic lung disease. J Perinatol. 2008;28:199–204.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham L. Hall Ph.D., F.R.A.N.Z.S.R.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hall, G.L., Robinson, P.D. (2015). Newer Pulmonary Function Tests. In: Davis, S., Eber, E., Koumbourlis, A. (eds) Diagnostic Tests in Pediatric Pulmonology. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1801-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1801-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1800-3

  • Online ISBN: 978-1-4939-1801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics