Skip to main content

Functional Evaluation of Cystic Fibrosis Transmembrane Conductance Regulator

  • Chapter
  • First Online:
Diagnostic Tests in Pediatric Pulmonology

Part of the book series: Respiratory Medicine ((RM))

  • 1645 Accesses

Abstract

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene which encodes an epithelial anion channel and regulatory protein. Derangements of CFTR protein function result in thickened, viscous mucus in the airways, GI tract, pancreas, sweat gland, and reproductive tract. The diagnosis and prognosis of CF is facilitated by demonstrating functional decrements of CFTR activity, and is a cornerstone of the diagnostic criteria. This chapter details the conduct and interpretation of the two most widely available diagnostic tests for CFTR functional analysis: sweat chloride testing and nasal potential difference (NPD). Details regarding the methods for conduct of these tests, sources of error, and emerging results supporting their interpretation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med. 2005;352(19):1992–2001.

    Article  CAS  PubMed  Google Scholar 

  2. Wilcken B, et al. Neonatal screening for cystic fibrosis: a comparison of two strategies for case detection in 1.2 million babies. J Pediatr. 1995;127(6):965–70.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson D. Cystic fibrosis of the pancreas and its relationship to celiac disease: clinical and pathologic study. Am J Dis Child. 1938;56:344.

    Article  Google Scholar 

  4. Di Sant’Agnese P, et al. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas; clinical significance and relationship to the disease. Pediatrics. 1953;12:549–63.

    Google Scholar 

  5. Rommens JM, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059–65.

    Article  CAS  PubMed  Google Scholar 

  6. Kerem B, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245(4922):1073–80.

    Article  CAS  PubMed  Google Scholar 

  7. Riordan JR, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  CAS  PubMed  Google Scholar 

  8. Quinton PM, Bijman J. Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med. 1983;308(20):1185–9.

    Article  CAS  PubMed  Google Scholar 

  9. Quinton PM. Chloride impermeability in cystic fibrosis. Nature. 1983;301(5899):421–2.

    Article  CAS  PubMed  Google Scholar 

  10. Knowles MR, et al. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science. 1983;221(4615):1067–70.

    Article  CAS  PubMed  Google Scholar 

  11. Knowles M, Gatzy J, Boucher R. Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest. 1983;71(5):1410–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Welsh MJ, Liedtke CM. Chloride and potassium channels in cystic fibrosis airway epithelia. Nature. 1986;322(6078):467–70.

    Article  CAS  PubMed  Google Scholar 

  13. Schoumacher RA, et al. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature. 1987;330(6150):752–4.

    Article  CAS  PubMed  Google Scholar 

  14. Cohn JA, et al. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med. 1998;339(10):653–8.

    Article  CAS  PubMed  Google Scholar 

  15. Chillon M, et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med. 1995;332(22):1475–80.

    Article  CAS  PubMed  Google Scholar 

  16. Turcios NL. Cystic fibrosis: an overview. J Clin Gastroenterol. 2005;39(4):307–17.

    Article  PubMed  Google Scholar 

  17. Derichs N, et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010;65(7):594–9.

    Article  PubMed  Google Scholar 

  18. Clancy JP. Diagnosing cystic fibrosis in patients with non-diagnostic results: the case for intestinal current measurements. Thorax. 2010;65(7):575–6.

    Article  CAS  PubMed  Google Scholar 

  19. De Jonge HR, et al. Ex vivo CF diagnosis by intestinal current measurements (ICM) in small aperture, circulating Ussing chambers. J Cyst Fibros. 2004;3 Suppl 2:159–63.

    Article  PubMed  Google Scholar 

  20. Hug MJ, et al. Measurement of ion transport function in rectal biopsies. Methods Mol Biol. 2011;741:87–107.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen-Cymberknoh M, et al. Evaluation of the intestinal current measurement method as a diagnostic test for cystic fibrosis. Pediatr Pulmonol. 2013;48(3):229–35.

    Article  PubMed  Google Scholar 

  22. Quinton P, et al. Beta-adrenergic sweat secretion as a diagnostic test for cystic fibrosis. Am J Respir Crit Care Med. 2012;186(8):732–9.

    Article  PubMed  Google Scholar 

  23. Sato K, Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest. 1984;73(6):1763–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sharp JK, Rock MJ. Newborn screening for cystic fibrosis. Clin Rev Allergy Immunol. 2008;35(3):107–15.

    Article  PubMed  Google Scholar 

  25. Shwachman H, Redmond A, Khaw KT. Studies in cystic fibrosis. Report of 130 patients diagnosed under 3 months of age over a 20-year period. Pediatrics. 1970;46(3):335–43.

    CAS  PubMed  Google Scholar 

  26. Grosse SD, et al. Newborn screening for cystic fibrosis: evaluation of benefits and risks and recommendations for state newborn screening programs. MMWR Recomm Rep. 2004;53(RR-13):1–36.

    Google Scholar 

  27. Chatfield S, et al. Neonatal screening for cystic fibrosis in Wales and the West Midlands: clinical assessment after five years of screening. Arch Dis Child. 1991;66(1 Spec No):29–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Doull IJ, et al. Cystic fibrosis-related deaths in infancy and the effect of newborn screening. Pediatr Pulmonol. 2001;31(5):363–6.

    Article  CAS  PubMed  Google Scholar 

  29. Farrell PM, et al. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Pediatrics. 2001;107(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  30. Farrell PM, et al. Bronchopulmonary disease in children with cystic fibrosis after early or delayed diagnosis. Am J Respir Crit Care Med. 2003;168(9):1100–8.

    Article  PubMed  Google Scholar 

  31. Farrell PM, et al. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J Pediatr. 2008;153(2):S4–14.

    Article  PubMed Central  PubMed  Google Scholar 

  32. De Boeck K, et al. Cystic fibrosis: terminology and diagnostic algorithms. Thorax. 2006;61(7):627–35.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ooi CY, et al. Comparing the American and European diagnostic guidelines for cystic fibrosis: same disease, different language? Thorax. 2012;67(7):618–24.

    Article  PubMed  Google Scholar 

  34. Wilschanski M, et al. Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am J Respir Crit Care Med. 2006;174(7):787–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gahm N, Shwachman H. Studies in cystic fibrosis of the pancreas; a simple test for the detection of excessive chloride on the skin. N Engl J Med. 1956;255(21):999–1001.

    Article  CAS  PubMed  Google Scholar 

  36. Gibson LE, Cooke RE. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics. 1959;23(3):545–9.

    CAS  PubMed  Google Scholar 

  37. Mishra A, Greaves R, Massie J. The relevance of sweat testing for the diagnosis of cystic fibrosis in the genomic era. Clin Biochem Rev. 2005;26(4):135–53.

    PubMed Central  PubMed  Google Scholar 

  38. Ramsey BW, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Accurso FJ, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363(21):1991–2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Clancy JP, et al. Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax. 2012;67(1):12–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. LeGrys VA, et al. Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines. J Pediatr. 2007;151(1):85–9.

    Article  PubMed  Google Scholar 

  42. Green A. Guidelines for the performance of the sweat test for the investigation of cystic fibrosis in the UK. UKNEQAS: Sheffield; 2003.

    Google Scholar 

  43. Coakley J, et al. Australian guidelines for the performance of the sweat test for the diagnosis of cystic fibrosis: report from the AACB Sweat Testing Working Party. Clin Biochem Rev. 2006;27(2):S1–7.

    PubMed  Google Scholar 

  44. LeGrys VA. Sweat testing for the diagnosis of cystic fibrosis: practical considerations. J Pediatr. 1996;129(6):892–7.

    Article  CAS  PubMed  Google Scholar 

  45. National Committee for Clinical Laboratory Standards. Sweat testing: sample collection and quantitative analysis: approved guideline. NCCLS Document C34-A2. Wayne, PA: National Committee for Clinical Laboratory Standards; 2000.

    Google Scholar 

  46. de Nooijer RA, et al. Assessment of CFTR function in homozygous R117H-7T subjects. J Cyst Fibros. 2011;10(5):326–32.

    Article  PubMed  Google Scholar 

  47. Davis PB, Drumm M, Konstan MW. Cystic fibrosis. Am J Respir Crit Care Med. 1996;154(5):1229–56.

    Article  CAS  PubMed  Google Scholar 

  48. Hardy JD, et al. Sweat tests in the newborn period. Arch Dis Child. 1973;48(4):316–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hammond KB, Turcios NL, Gibson LE. Clinical evaluation of the macroduct sweat collection system and conductivity analyzer in the diagnosis of cystic fibrosis. J Pediatr. 1994;124(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  50. Mishra A, Greaves R, Massie J. The limitations of sweat electrolyte reference intervals for the diagnosis of cystic fibrosis: a systematic review. Clin Biochem Rev. 2007;28(2):60–76.

    PubMed Central  PubMed  Google Scholar 

  51. Mishra A, et al. Diagnosis of cystic fibrosis by sweat testing: age-specific reference intervals. J Pediatr. 2008;153(6):758–63.

    Article  PubMed  Google Scholar 

  52. Jayaraj R, et al. A reference interval for sweat chloride in infants aged between five and six weeks of age. Ann Clin Biochem. 2009;46(Pt 1):73–8.

    Article  PubMed  Google Scholar 

  53. Shwachman H, Mahmoodian A, Neff RK. The sweat test: sodium and chloride values. J Pediatr. 1981;98(4):576–8.

    Article  CAS  PubMed  Google Scholar 

  54. Andrews BF, Bruton OC, Knoblock EC. Sweat chloride concentration in children with allergy and with cystic fibrosis of the pancreas. Pediatrics. 1962;29:204–8.

    CAS  PubMed  Google Scholar 

  55. Davis PB, et al. Sweat chloride concentration in adults with pulmonary diseases. Am Rev Respir Dis. 1983;128(1):34–7.

    CAS  PubMed  Google Scholar 

  56. Warwick WJ, Hansen L. Measurement of chloride in sweat with the chloride-selective electrode. Clin Chem. 1978;24(11):2050–3.

    CAS  PubMed  Google Scholar 

  57. Warwick WJ, Hansen LG. Measurement of chloride in sweat by use of a selective electrode and strip-chart recorder. Clin Chem. 1978;24(2):381–2.

    CAS  PubMed  Google Scholar 

  58. Gharib R, Joos HA, Hilty LB. Sweat chloride concentration; a comparative study in children with bronchial asthma and with cystic fibrosis. Am J Dis Child. 1965;109:66–8.

    Article  CAS  PubMed  Google Scholar 

  59. Mekus F, et al. Cystic-fibrosis-like disease unrelated to the cystic fibrosis transmembrane conductance regulator. Hum Genet. 1998;102(5):582–6.

    Article  CAS  PubMed  Google Scholar 

  60. Burgel PR, et al. Non-classic cystic fibrosis associated with D1152H CFTR mutation. Clin Genet. 2010;77(4):355–64.

    Article  CAS  PubMed  Google Scholar 

  61. Goubau C, et al. Phenotypic characterisation of patients with intermediate sweat chloride values: towards validation of the European diagnostic algorithm for cystic fibrosis. Thorax. 2009;64(8):683–91.

    Article  CAS  PubMed  Google Scholar 

  62. Davis PB, Schluchter MD, Konstan MW. Relation of sweat chloride concentration to severity of lung disease in cystic fibrosis. Pediatr Pulmonol. 2004;38(3):204–9.

    Article  PubMed  Google Scholar 

  63. Knowles M, Gatzy J, Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med. 1981;305(25):1489–95.

    Article  CAS  PubMed  Google Scholar 

  64. Knowles MR, Paradiso AM, Boucher RC. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum Gene Ther. 1995;6(4):445–55.

    Article  CAS  PubMed  Google Scholar 

  65. Middleton PG, Geddes DM, Alton EW. Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium. Eur Respir J. 1994;7(11):2050–6.

    CAS  PubMed  Google Scholar 

  66. Knowles MR, et al. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995;333(13):823–31.

    Article  CAS  PubMed  Google Scholar 

  67. Noone PG, et al. Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol Ther. 2000;1(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  68. Middleton PG, et al. Nasal application of the cationic liposome DC-Chol:DOPE does not alter ion transport, lung function or bacterial growth. Eur Respir J. 1994;7(3):442–5.

    Article  CAS  PubMed  Google Scholar 

  69. McCarty NA, et al. A phase I randomized, multicenter trial of CPX in adult subjects with mild cystic fibrosis. Pediatr Pulmonol. 2002;33(2):90–8.

    Article  PubMed  Google Scholar 

  70. Wilschanski M, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med. 2003;349(15):1433–41.

    Article  CAS  PubMed  Google Scholar 

  71. Kerem E, et al. PTC124 induces time-dependent improvements in chloride conductance and clinical parameters in patients with nonsense-mutation-mediated cystic fibrosis. Pediatr Pulmonol. 2008;S31:294.

    Google Scholar 

  72. Clancy JP, et al. No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am J Respir Cell Mol Biol. 2007;37(1):57–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Accurso, FJ, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 363(21):1991–2003.

    Google Scholar 

  74. Konstan MW, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther. 2004;15(12):1255–69.

    Article  CAS  PubMed  Google Scholar 

  75. Zeitlin PL, et al. A phase I trial of intranasal Moli 1901 for cystic fibrosis. Chest. 2004;125(1):143–9.

    Article  CAS  PubMed  Google Scholar 

  76. Rowe SM, Accurso F, Clancy JP. Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc Am Thorac Soc. 2007;4(4):387–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Rowe SM, et al. Correction of sodium transport with nasal administration of the prostasin inhibitor QAU145 in CF subjects. Pediatr Pulmonol. 2008;S31:A268.

    Google Scholar 

  78. Rowe SM, et al. Reduced sodium transport with nasal administration of the prostasin inhibitor Camostat in cystic fibrosis subjects. Chest. 2013;144(1):200–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Gatzy JT. Bioelectric properties of the isolated amphibian lung. Am J Physiol. 1967;213(2):425–31.

    CAS  PubMed  Google Scholar 

  80. Knowles MR, et al. Measurements of nasal transepithelial electric potential differences in normal human subjects in vivo. Am Rev Respir Dis. 1981;124(4):484–90.

    CAS  PubMed  Google Scholar 

  81. Knowles MR, et al. Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am Rev Respir Dis. 1982;126(1):108–12.

    CAS  PubMed  Google Scholar 

  82. Davies JC, et al. Potential difference measurements in the lower airway of children with and without cystic fibrosis. Am J Respir Crit Care Med. 2005;171(9):1015–9.

    Article  PubMed  Google Scholar 

  83. Anderson MP, et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991;253(5016):202–5.

    Article  CAS  PubMed  Google Scholar 

  84. Li C, Naren AP. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol Ther. 2005;108(2):208–23.

    Article  CAS  PubMed  Google Scholar 

  85. Chen JH, et al. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell. 2010;143(6):911–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Fajac I, et al. Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients. Thorax. 2004;59(11):971–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Solomon GM, et al. An international randomized multicenter comparison of nasal potential difference techniques. Chest. 2010;138(4):919–28.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Wilschanski M, et al. Nasal potential difference measurements in patients with atypical cystic fibrosis. Eur Respir J. 2001;17(6):1208–15.

    Article  CAS  PubMed  Google Scholar 

  89. Sermet-Gaudelus I, et al. Clinical phenotype and genotype of children with borderline sweat test and abnormal nasal epithelial chloride transport. Am J Respir Crit Care Med. 2010;182(7):929–36.

    Article  PubMed  Google Scholar 

  90. Cantin AM, et al. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med. 2006;173(10):1139–44.

    Article  CAS  PubMed  Google Scholar 

  91. Clunes LA, et al. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J. 2012;26(2):533–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Sloane PA, et al. A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One. 2012;7(6):e39809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Southern KW, et al. A modified technique for measurement of nasal transepithelial potential difference in infants. J Pediatr. 2001;139(3):353–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Rowe M.D., M.S.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Solomon, G.M., Rowe, S.M. (2015). Functional Evaluation of Cystic Fibrosis Transmembrane Conductance Regulator. In: Davis, S., Eber, E., Koumbourlis, A. (eds) Diagnostic Tests in Pediatric Pulmonology. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1801-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1801-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1800-3

  • Online ISBN: 978-1-4939-1801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics