Skip to main content

Radiotherapy and Radiopharmaceuticals for the Treatment of Pancreatic Neuroendocrine Tumors

  • Chapter
  • First Online:
  • 1026 Accesses

Abstract

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are typically slow growing tumors of the endocrine pancreas and are often functional. They express somatostatin receptors, and the feasibility of imaging such tumors using radioiodinated somatostatin analogs in 1989 by Krenning et al. led to the exploration of the possibilities to not only develop further imaging agents but also to develop therapeutic agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krenning EP, Bakker WH, Breeman WA, et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet. 1989;1(8632):242–4.

    Article  PubMed  CAS  Google Scholar 

  2. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46 Suppl 1:4S–12.

    PubMed  Google Scholar 

  3. Grunwald F, Ezziddin S. 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2010;40(2):153–63.

    Article  PubMed  Google Scholar 

  4. Bomanji JB, Papathanasiou ND. (1)(1)(1)In-DTPA(0)-octreotide (Octreoscan), (1)(3)(1)I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S113–25.

    Article  PubMed  Google Scholar 

  5. Bomanji J, Levison DA, Flatman WD, et al. Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas: a histopathological comparison. J Nucl Med. 1987;28(6):973–8.

    PubMed  CAS  Google Scholar 

  6. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13(7):513–21.

    Article  PubMed  CAS  Google Scholar 

  7. Giammarile F, Chiti A, Lassmann M, Brans B, Flux G. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35(5):1039–47.

    Article  PubMed  CAS  Google Scholar 

  8. Castellani MR, Seghezzi S, Chiesa C, et al. (131)I-MIBG treatment of pheochromocytoma: low versus intermediate activity regimens of therapy. Q J Nucl Med Mol Imaging. 2010;54(1):100–13.

    PubMed  CAS  Google Scholar 

  9. Mukherjee JJ, Kaltsas GA, Islam N, et al. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma and medullary carcinoma of the thyroid with (131)I-meta-iodobenzylguanidine [(131)I-mIBG]. Clin Endocrinol (Oxf). 2001;55(1):47–60.

    Article  CAS  Google Scholar 

  10. Navalkissoor S, Alhashimi DM, Quigley AM, Caplin ME, Buscombe JR. Efficacy of using a standard activity of (131)I-MIBG therapy in patients with disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2010;37(5):904–12.

    Article  PubMed  Google Scholar 

  11. Safford SD, Coleman RE, Gockerman JP, et al. Iodine-131 metaiodobenzylguanidine treatment for metastatic carcinoid. Results in 98 patients. Cancer. 2004;101(9):1987–93.

    Article  PubMed  CAS  Google Scholar 

  12. Barrett JA, Joyal JL, Hillier SM, et al. Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharm. 2010;25(3):299–308.

    Article  PubMed  CAS  Google Scholar 

  13. Mairs RJ, Boyd M. Optimizing MIBG therapy of neuroendocrine tumors: preclinical evidence of dose maximization and synergy. Nucl Med Biol. 2008;35 Suppl 1:S9–20.

    Article  PubMed  CAS  Google Scholar 

  14. Strickland DK, Vaidyanathan G, Friedman HS, Zalutsky MR. Meta-[131I]iodobenzylguanidine uptake and meta-[211At]astatobenzylguanidine treatment in human medulloblastoma cell lines. J Neurooncol. 1995;25(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  15. Vaidyanathan G, Strickland DK, Zalutsky MR. Meta-[211At]astatobenzylguanidine: further evaluation of a potential therapeutic agent. Int J Cancer. 1994;57(6):908–13.

    Article  PubMed  CAS  Google Scholar 

  16. Mothersill C, Seymour CB. Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer. 2004;4(2):158–64.

    Article  PubMed  CAS  Google Scholar 

  17. Anthony LB, Woltering EA, Espenan GD, Cronin MD, Maloney TJ, McCarthy KE. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 2002;32(2):123–32.

    Article  PubMed  Google Scholar 

  18. Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32(2):110–22.

    Article  PubMed  Google Scholar 

  19. Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med. 2002;43(5):610–6.

    PubMed  CAS  Google Scholar 

  20. Bushnell D, O’Dorisio T, Menda Y, et al. Evaluating the clinical effectiveness of 90Y-SMT 487 in patients with neuroendocrine tumors. J Nucl Med. 2003;44(10):1556–60.

    PubMed  Google Scholar 

  21. Kwekkeboom DJ, Bakker WH, Kooij PP, et al. [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med. 2001;28(9):1319–25.

    Article  PubMed  CAS  Google Scholar 

  22. Kwekkeboom DJ, de Herder WW, van Eijck CH, et al. Peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2010;40(2):78–88.

    Article  PubMed  Google Scholar 

  23. De Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002;32(2):133–40.

    Article  PubMed  Google Scholar 

  24. Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A, Mikolajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38(10):1788–97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Teunissen JJ, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Clin Oncol. 2004;22(13):2724–9.

    Article  PubMed  CAS  Google Scholar 

  26. Khan S, Krenning EP, van Essen M, Kam BL, Teunissen JJ, Kwekkeboom DJ. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Nucl Med. 2011;52(9):1361–8.

    Article  PubMed  CAS  Google Scholar 

  27. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26(13):2124–30.

    Article  PubMed  CAS  Google Scholar 

  28. Teunissen JJ, Krenning EP, de Jong FH, et al. Effects of therapy with [177Lu-DOTA 0, Tyr 3]octreotate on endocrine function. Eur J Nucl Med Mol Imaging. 2009;36(11):1758–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Valkema R, Pauwels SA, Kvols LK, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med. 2005;46 Suppl 1:83S–91.

    PubMed  CAS  Google Scholar 

  30. Pool SE, Krenning EP, Koning GA, et al. Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin Nucl Med. 2010;40(3):209–18.

    Article  PubMed  Google Scholar 

  31. van Essen M, Krenning EP, Kam BL, de Herder WW, van Aken MO, Kwekkeboom DJ. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(4):743–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rich TA, Shepard RC, Mosley ST. Four decades of continuing innovation with fluorouracil: current and future approaches to fluorouracil chemoradiation therapy. J Clin Oncol. 2004;22(11):2214–32.

    Article  PubMed  CAS  Google Scholar 

  33. Brogsitter C, Pinkert J, Bredow J, Kittner T, Kotzerke J. Enhanced tumor uptake in neuroendocrine tumors after intraarterial application of 131I-MIBG. J Nucl Med. 2005;46(12):2112–6.

    PubMed  CAS  Google Scholar 

  34. McStay MK, Maudgil D, Williams M, et al. Large-volume liver metastases from neuroendocrine tumors: hepatic intraarterial 90Y-DOTA-lanreotide as effective palliative therapy. Radiology. 2005;237(2):718–26.

    Article  PubMed  Google Scholar 

  35. Schroeder RP, van Weerden WM, Bangma C, Krenning EP, de Jong M. Peptide receptor imaging of prostate cancer with radiolabelled bombesin analogues. Methods. 2009;48(2):200–4.

    Article  PubMed  CAS  Google Scholar 

  36. Maddalena ME, Fox J, Chen J, et al. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med. 2009;50(12):2017–24.

    Article  PubMed  Google Scholar 

  37. Kwekkeboom DJ, Bakker WH, Kooij PP, et al. Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur J Nucl Med. 2000;27(9):1312–7.

    Article  PubMed  CAS  Google Scholar 

  38. Behr TM, Behe M, Angerstein C, et al. Cholecystokinin-B/gastrin receptor binding peptides: preclinical development and evaluation of their diagnostic and therapeutic potential. Clin Cancer Res. 1999;5(10 Suppl):3124s–38.

    PubMed  CAS  Google Scholar 

  39. Chen P, Cameron R, Wang J, Vallis KA, Reilly RM. Antitumor effects and normal tissue toxicity of 111In-labeled epidermal growth factor administered to athymic mice bearing epidermal growth factor receptor-positive human breast cancer xenografts. J Nucl Med. 2003;44(9):1469–78.

    PubMed  CAS  Google Scholar 

  40. Cuartero-Plaza A, Martinez-Miralles E, Rosell R, Vadell-Nadal C, Farre M, Real FX. Radiolocalization of squamous lung carcinoma with 131I-labeled epidermal growth factor. Clin Cancer Res. 1996;2(1):13–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lowell B. Anthony M.D., F.A.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anthony, L.B., Sinha, P. (2015). Radiotherapy and Radiopharmaceuticals for the Treatment of Pancreatic Neuroendocrine Tumors. In: Pisegna, J. (eds) Management of Pancreatic Neuroendocrine Tumors. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1798-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1798-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1797-6

  • Online ISBN: 978-1-4939-1798-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics