Skip to main content

Differential Equation Techniques for Modeling a Cycle-Specific Oncolytic Virotherapeutic

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 107))

Abstract

The development of a mathematical model of oncolytic virotherapeutic vesticular stomatitis virus (VSV) is presented in stages. Standard mathematical tools are discussed along with the development and analysis of the model. A defining property of VSV is that it only affects tumor cells when they are in the active phases of the cell cycle. To model this characteristic, we first model tumor growth and separate cells into active and resting, which takes the form of a linear system of differential equations. We then take into account the minimum time needed for cells to travel through the active phases of the cell cycle, first using delay-differential equations and then later age-structured partial differential equations. Our basic tumor growth model allows us to investigate linear systems analysis (eigenvalue analysis). We then study similar techniques for delay differential equations, after adding the minimum time necessary to travel through the active phases of the cell cycle to the model. After tumor growth alone has been modeled, we include viral dynamics, which takes the form of a nonlinear system of ordinary differential equations. We investigate how linearization helps us understand how to properly develop the model. Finally we add the minimum biological time to the viral model. With the model fully developed, we arrive at a system of differential equations, one of which is an age-structured partial differential equation, which provides a nice example for discussing the method of characteristics. Finally, we show how our model can be used to investigate the dynamics of the tumor-virus system. As we travel through the development of our model, we discuss various techniques to analyze ordinary, delay, and partial differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Au, G.G., Lindberg, A.M., Barry, R.D., Shafren, D.R.: Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int. J. Oncol. 26(6), 1471–1476 (2005)

    Google Scholar 

  2. Bajzer, Z., Carr, T., Dingli, D., Josic, K.: Optimization of tumor virotherapy with recombinant measles virus. In: Lim, G.J., Lee, E.K. (eds.) Optimization in Medicine and Biology. Auerbach Publications, New York (2008)

    Google Scholar 

  3. Bajzer, Z., Carr, T., Josic, K., Russell, S.J., Dingli, D.: Modeling of cancer virotherapy with recombinant measles viruses. J. Theor. Biol. 252(1), 109–122 (2008)

    Article  MathSciNet  Google Scholar 

  4. Balachandran, S., Barber, G.N.: Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 50(2), 135–138 (2000)

    Article  Google Scholar 

  5. Bell, J., Parato, K., Atkins, H.: Vesicular stomatitis virus. In: Harrington, K.J., Vile, R.G., Pandha, H.S. (eds.) Viral Therapy of Cancer. Wiley, Hoboken (2008)

    Google Scholar 

  6. Biesecker, M., Kimn, J.H., Lu, H., Dingli, D., Bajzer, Z.: Optimization of virotherapy for cancer. Bull. Math. Biol. 72(2), 469–489 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cain, J.W., Reynolds, A.M.: Ordinary and Partial Differential Equations. An Introduction to Dynamical Systems. Creative Commons. Virginia Commonwealth University, Richmond (2010)

    Google Scholar 

  8. Comins, C., Spicer, J., Protheroe, A., Roulstone, V., Twigger, K., White, C.M., Vile, R., Melcher, A., Coffey, M.C., Mettinger, K.L., Nuovo, G., Cohn, D.E., Phelps, M., Harrington, K.J., Pandha, H.S.: REO-10: a phase I study of intravenous reovirus and docetaxel in patients with advanced cancer. Clin. Cancer Res. 16(22), 5564–5572 (2010)

    Article  Google Scholar 

  9. Crivelli, J.J., Foldes, J., Kim, P.S., Wares, J.R.: A mathematical model for cell cycle-specific cancer virotherapy. J. Biol. Dyn. 6(Suppl 1), 104–120 (2012)

    Article  MathSciNet  Google Scholar 

  10. Dingli, D., Peng, K.W., Harvey, M.E., Greipp, P.R., O’Connor, M.K., Cattaneo, R., Morris, J.C., Russell, S.J.: Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 103(5), 1641–1646 (2004)

    Article  Google Scholar 

  11. Friedman, A., Tian, J.P., Fulci, G., Chiocca, E.A., Wang, J.: Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res. 66(4), 2314–2319 (2006)

    Article  Google Scholar 

  12. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D.D., Kirn, D.H.: ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3(6), 639–645 (1997)

    Article  Google Scholar 

  13. Komarova, N.L., Wodarz, D.: ODE models for oncolytic virus dynamics. J. Theor. Biol. 263(4), 530–543 (2010)

    Article  MathSciNet  Google Scholar 

  14. Liu, W., Hillen, T., Freedman, H.I.: A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse. Math. Biosci. Eng. 4(2), 239–259 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Novozhilov, A.S., Berezovskaya, F.S., Koonin, E.V., Karev, G.P.: Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biol. Direct 1, 6 (2006)

    Article  Google Scholar 

  16. Oliere, S., Arguello, M., Mesplede, T., Tumilasci, V., Nakhaei, P., Stojdl, D., Sonenberg, N., Bell, J., Hiscott, J.: Vesicular stomatitis virus oncolysis of T lymphocytes requires cell cycle entry and translation initiation. J. Virol. 82(12), 5735–5749 (2008)

    Article  Google Scholar 

  17. Park, B.H., Hwang, T., Liu, T.C., Sze, D.Y., Kim, J.S., Kwon, H.C., Oh, S.Y., Han, S.Y., Yoon, J.H., Hong, S.H., Moon, A., Speth, K., Park, C., Ahn, Y.J., Daneshmand, M., Rhee, B.G., Pinedo, H.M., Bell, J.C., Kirn, D.H.: Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9(6), 533–542 (2008)

    Article  Google Scholar 

  18. Pecora, A.L., Rizvi, N., Cohen, G.I., Meropol, N.J., Sterman, D., Marshall, J.L., Goldberg, S., Gross, P., O’Neil, J.D., Groene, W.S., Roberts, M.S., Rabin, H., Bamat, M.K., Lorence, R.M.: Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J. Clin. Oncol. 20(9), 2251–2266 (2002)

    Article  Google Scholar 

  19. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  20. Reddy, P.S., Burroughs, K.D., Hales, L.M., Ganesh, S., Jones, B.H., Idamakanti, N., Hay, C., Li, S.S., Skele, K.L., Vasko, A.J., Yang, J., Watkins, D.N., Rudin, C.M., Hallenbeck, P.L.: Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J. Natl. Cancer Inst. 99(21), 1623–1633 (2007)

    Article  Google Scholar 

  21. Todo, T., Martuza, R.L., Rabkin, S.D., Johnson, P.A.: Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc. Natl. Acad. Sci. USA 98(11), 6396–6401 (2001)

    Article  Google Scholar 

  22. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wodarz, D.: Computational approaches to study oncolytic virus therapy: insights and challenges. Gene Ther. Mol. Biol. 8, 137–146 (2004)

    Google Scholar 

  24. Wodarz, D., Komarova, N.: Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection. PLoS ONE 4(1), e4271 (2009)

    Article  Google Scholar 

  25. Wu, J.T., Byrne, H.M., Kirn, D.H., Wein, L.M.: Modeling and analysis of a virus that replicates selectively in tumor cells. Bull. Math. Biol. 63(4), 731–768 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna R. Wares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Wares, J.R., Crivelli, J.J., Kim, P.S. (2014). Differential Equation Techniques for Modeling a Cycle-Specific Oncolytic Virotherapeutic. In: Eladdadi, A., Kim, P., Mallet, D. (eds) Mathematical Models of Tumor-Immune System Dynamics. Springer Proceedings in Mathematics & Statistics, vol 107. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1793-8_10

Download citation

Publish with us

Policies and ethics