Skip to main content

Incorporating Asymmetric Stem Cell Division into the Roeder Model for Chronic Myeloid Leukemia

  • Conference paper
  • First Online:
Mathematical Models of Tumor-Immune System Dynamics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 107))

  • 1672 Accesses

Abstract

In this chapter we propose several modifications to the Roeder model of chronic myeloid leukemia (Roeder et al.: Nat. Med. 12(10), 1181–1184 2006). Specifically, we incorporate asymmetric division of stem cells and precursors, allow precursors to live a variable amount of time before maturing, and introduce feedback inhibition from mature cells to stem cells and precursors. These modifications result in more accurate simulations of cancer genesis and treatment. In comparison with the original model, our results indicate lower transition rates of stem cells between their quiescent and cycling states, which are supported by the rates suggested by experimental data. Decreased transition rates of stem cells translate into quiescent cancer stem cells that are better protected from imatinib, resulting in a large residual cancer burden, even after many years of therapy. Our modeling results suggest that the efficacy of imatinib would increase if it is combined with a drug that induces cancer stem cells to cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, X., Tiwari, A., Sun, Y., Ding, P., Ashby Jr., C., Chen, Z.: BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk. Res. 34, 1255–1268 (2010)

    Article  Google Scholar 

  2. Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G., Suda, T.: Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004)

    Article  Google Scholar 

  3. Colijn, C., Mackey, M.: A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237, 117–132 (2005)

    MathSciNet  Google Scholar 

  4. Cortes, J., Talpaz, M., O’Brien, S., Jones, D., Luthra, R., Shan, J., Giles, F., Faderl, S., Verstovsek, S., Garcia-Manero, G., Rios, M.B., Kantarjian, H.: Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin. Cancer Res. 11, 3425–3432 (2005)

    Article  Google Scholar 

  5. Doumic-Jauffret, M., Kim, P., Perthame, B.: Stability analysis of simplified yet complete model for chronic myelogenous leukemia. Bull. Math. Biol. 72, 1732–1759 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Essers, M., Offner, S., Blanco-Bose, W., Waibler, Z., Kalinke, U., Duchosal, M., Trumpp, A.: IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–909 (2009)

    Article  Google Scholar 

  7. Glauche, I., Horn, K., Horn, M., Thielecke, L., Essers, M., Trumpp, A., Roeder, I.: Therapy of chronic myeloid leukemia can benefit from the activation of stem cells: simulation studies of different treatment combinations. Br. J. Cancer 106(11), 1742–1752 (2012)

    Article  Google Scholar 

  8. Horn, M., Glauche, I., Muller, M., Hehlmann, R., Hochhaus, A., Loeffler, M., Roeder, I.: Model-based decision rules reduce the risk of molecular relapse after cessation of tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Blood 121, 378–384 (2013)

    Article  Google Scholar 

  9. Hughes, T., Kaeda, J., Branford, S., Rudzki, Z., Hochhaus, A., Hensley, M., Gathmann, I., Bolton, A., van Hoomissen, I., Goldman, J., Radich, J.: International randomised study of interferon versus STI571 (IRIS) Study Group. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349(15), 1423–1432 (2003)

    Google Scholar 

  10. Kim, P., Lee, P., Levy, D.: Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol. 4(6), e1000095 (2008)

    Article  MathSciNet  Google Scholar 

  11. Kim, P., Lee, P., Levy, D.: A PDE model for imatinib-treated chronic myelogenous leukemia. Bull. Math. Biol. 70, 1994–2016 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim, P., Lee, P., Levy, D.: Modeling imatinib-treated chronic myelogenous leukemia: reducing the complexity of agent-based models. Bull. Math. Biol. 70, 728–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Komarova, N., Katouli, A., Wodarz, D.: Combination of two but no three current targeted drugs can improve therapy of chronic myeloid leukemia. PLoS One 4(2), e4423 (2009)

    Article  Google Scholar 

  14. Komarova, N., Wodarz, D.: Drug resistance in cancer: Principles of emergence and prevention. PNAS 102(27), 9714–9719 (2005)

    Article  Google Scholar 

  15. Leder, K., Foo, J., Skaggs, B., Gorre, M., Sawyers, C., Michor, F.: Fitness conferred by BCR-ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia. PLoS One 6(11), e27682 (2011)

    Article  Google Scholar 

  16. Lee, S.J.: Chronic myelogenous leukaemia. Br. J. Haematol. 111, 993–1009 (2000)

    Article  Google Scholar 

  17. Mahmud, N., Devine, S., Weller, K., Parmar, S., Sturgeon, C., Nelson, M., Hewett, T., Hoffman, R.: The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 97, 3061–3068 (2001)

    Article  Google Scholar 

  18. Mahon, F.X., Rea, D., Guilhot, J., Guilhot, F., Huguet, F., Nicolini, F., Legros, L., Charbonnier, A., Guerci, A., Varet, B., Etienne, G., Reiffers, J., Rousselot, P.: Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet. Oncol. 11, 1029–1035 (2010)

    Article  Google Scholar 

  19. Marciniak-Czochra, A., Stiehl, T., Ho, A., Jager, W., Wagner, W.: Modeling of asymmetric cell division in hematopoietic stem cells: regulation of self renewal is essential for efficient repopulation. Stem Cells Dev. 18, 377–385 (2009)

    Article  Google Scholar 

  20. Metcalf, D.: Hematopoietic cytokines. Blood 111(2), 485–491 (2008)

    Article  Google Scholar 

  21. Michor, F., Hughes, T., Iwasa, Y., Branford, S., Neil, P., Sawyers, C., Nowak, M.: Dynamics of chronic myeloid leukemia. Nature 435(7046), 1267–1270 (2005)

    Article  Google Scholar 

  22. Moore, H. and N. Li: A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theoret. Biol. 227, 513–523 (2004)

    Article  MathSciNet  Google Scholar 

  23. Price, T., Chatta, G., Dale, D.: Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88(1) 335–340 (1996)

    Google Scholar 

  24. Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M., Loeffler, M.: Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10) 1181–1184 (2006)

    Article  Google Scholar 

  25. Roeder, I., Herberg, M., Horn, M.: An age-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia. Bull. Math. Biol. 71, 602–626 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rufer, N., Brummendorf, T., Kolvraa, S., Bischoff, C., Christensen, K., Wadsworth, L., Schulzer, M.: Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 190(2), 157–167 (1999)

    Article  Google Scholar 

  27. Stiehl, T., Marciniak-Czochra, A.: Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom. 7(1), 166–202 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tomasetti, C., Levy, D.: Role of symmetric and asymmetric division of stem cells in developing drug resistance. PNAS 107(39), 16766–16771 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The work of GC was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1322106. The work of DL was supported in part by the John Simon Guggenheim Memorial Foundation and by the joint National Science Foundation/National Institute of General Medical Sciences program under Grant No. DMS-0758374. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation, the National Cancer Institute, or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Clapp, G., Levy, D. (2014). Incorporating Asymmetric Stem Cell Division into the Roeder Model for Chronic Myeloid Leukemia. In: Eladdadi, A., Kim, P., Mallet, D. (eds) Mathematical Models of Tumor-Immune System Dynamics. Springer Proceedings in Mathematics & Statistics, vol 107. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1793-8_1

Download citation

Publish with us

Policies and ethics