Skip to main content

Signs of Timing in Motor Cortex During Movement Preparation and Cue Anticipation

  • Chapter
  • First Online:
Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

The capacity to accurately anticipate the timing of predictable events is essential for sensorimotor behavior. Motor cortex holds an established role in movement preparation and execution. In this chapter we review the different ways in which motor cortical activity is modulated by event timing in sensorimotor delay tasks. During movement preparation, both single neuron and population responses reflect the temporal constraints of the task. Anticipatory modulations prior to sensory cues are also observed in motor cortex when the cue timing is predictable. We propose that the motor cortical activity during cue anticipation and movement preparation is embedded in a timing network that facilitates sensorimotor processing. In this context, the pre-cue and post-cue activity may reflect a presetting mechanism, complementing processing during movement execution, while prohibiting premature responses in situations requiring delayed motor output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riehle A, Grün S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science. 1997;278(5345):1950–3.

    PubMed  CAS  Google Scholar 

  2. Riehle A, Grammont F, Diesmann M, Grün S. Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation. J Physiol Paris. 2000;94(5–6):569–82.

    PubMed  CAS  Google Scholar 

  3. Roux S, Coulmance M, Riehle A. Context-related representation of timing processes in monkey motor cortex. Eur J Neurosci. 2003;18(4):1011–6.

    PubMed  Google Scholar 

  4. Janssen P, Shadlen MN. A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci. 2005;8(2):234–41.

    PubMed  CAS  Google Scholar 

  5. Requin J, Brener J, Ring C. Preparation for action. In: Jennings RR, Coles MGH, editors. Handbook of cognitive psychophysiology: central and autonomous nervous system approaches. New York: Wiley; 1991.

    Google Scholar 

  6. Riehle A. Preparation for action: one of the key functions of the motor cortex. In: Riehle A, Vaadia E, editors. Motor cortex in voluntary movements: a distributed system for distributed functions. Boca Raton: CRC; 2005.

    Google Scholar 

  7. Renoult L, Roux S, Riehle A. Time is a rubberband: neuronal activity in monkey motor cortex in relation to time estimation. Eur J Neurosci. 2006;23(11):3098–108.

    PubMed  Google Scholar 

  8. Niki H, Watanabe M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 1979;171(2):213–24.

    PubMed  CAS  Google Scholar 

  9. Mauritz KH, Wise SP. Premotor cortex of the rhesus monkey: neuronal activity in anticipation of predictable environmental events. Exp Brain Res. 1986;61(2):229–44.

    PubMed  CAS  Google Scholar 

  10. Vaadia E, Kurata K, Wise SP. Neuronal activity preceding directional and nondirectional cues in the premotor cortex of rhesus monkeys. Somatosens Mot Res. 1988;6(2):207–30.

    PubMed  CAS  Google Scholar 

  11. Lucchetti C, Bon L. Time-modulated neuronal activity in the premotor cortex of macaque monkeys. Exp Brain Res. 2001;141(2):254–60.

    PubMed  CAS  Google Scholar 

  12. Ghose GM, Maunsell JHR. Attentional modulation in visual cortex depends on task timing. Nature. 2002;419(6907):616–20.

    PubMed  CAS  Google Scholar 

  13. Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2003;38(2):317–27.

    PubMed  CAS  Google Scholar 

  14. Brody CD, Hernández A, Zainos A, Romo R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex. 2003;13(11):1196–207.

    PubMed  Google Scholar 

  15. Akkal D, Escola L, Bioulac B, Burbaud P. Time predictability modulates pre-supplementary motor area neuronal activity. Neuroreport. 2004;15(8):1283–6.

    PubMed  CAS  Google Scholar 

  16. Lucchetti C, Ulrici A, Bon L. Dorsal premotor areas of nonhuman primate: functional flexibility in time domain. Eur J Appl Physiol. 2005;95(2–3):121–30.

    PubMed  Google Scholar 

  17. Tsujimoto S, Sawaguchi T. Neuronal activity representing temporal prediction of reward in the primate prefrontal cortex. J Neurophysiol. 2005;93(6):3687–92.

    PubMed  Google Scholar 

  18. Roesch MR, Olson CR. Neuronal activity in primate orbitofrontal cortex reflects the value of time. J Neurophysiol. 2005;94(4):2457–71.

    PubMed  Google Scholar 

  19. Roesch MR, Olson CR. Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. J Neurophysiol. 2005;94(2):1469–97.

    PubMed  Google Scholar 

  20. Genovesio A, Tsujimoto S, Wise SP. Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol. 2006;95(5):3281–5.

    PubMed  PubMed Central  Google Scholar 

  21. Maimon G, Assad JA. A cognitive signal for the proactive timing of action in macaque LIP. Nat Neurosci. 2006;9(7):948–55.

    PubMed  CAS  Google Scholar 

  22. Maimon G, Assad JA. Parietal area 5 and the initiation of self-timed movements versus simple reactions. J Neurosci. 2006;26(9):2487–98.

    PubMed  CAS  Google Scholar 

  23. Shuler MG, Bear MF. Reward timing in the primary visual cortex. Science. 2006;311(5767):1606–9.

    PubMed  CAS  Google Scholar 

  24. Kalenscher T, Ohmann T, Windmann S, Freund N, Güntürkün O. Single forebrain neurons represent interval timing and reward amount during response scheduling. Eur J Neurosci. 2006;24(10):2923–31.

    PubMed  Google Scholar 

  25. Lebedev MA, O’Doherty JE, Nicolelis MAL. Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol. 2008;99(1):166–86.

    PubMed  Google Scholar 

  26. Schneider BA, Ghose GM. Temporal production signals in parietal cortex. PLoS Biol. 2012;10(10):e1001413.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44.

    PubMed  CAS  Google Scholar 

  28. Lee IH, Assad JA. Putaminal activity for simple reactions or self-timed movements. J Neurophysiol. 2003;89(5):2528–37.

    PubMed  Google Scholar 

  29. Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci. 2009;12(4):502–7.

    PubMed  CAS  Google Scholar 

  30. Shinomoto S, Omi T, Mita A, Mushiake H, Shima K, Matsuzaka Y, et al. Deciphering elapsed time and predicting action timing from neuronal population signals. Front Comput Neurosci. 2011;5:29.

    PubMed  PubMed Central  Google Scholar 

  31. Zarco W, Merchant H, Prado L, Mendez JC. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol. 2009;102(6):3191–202.

    PubMed  PubMed Central  Google Scholar 

  32. Merchant H, Zarco W, Pérez O, Prado L, Bartolo R. Measuring time with different neural chronometers during a synchronization-continuation task. Proc Natl Acad Sci U S A. 2011;108(49):19784–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96.

    PubMed  CAS  Google Scholar 

  34. Merchant H, Georgopoulos AP. Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol. 2006;95(1):1–13.

    PubMed  Google Scholar 

  35. Sakurai Y, Takahashi S, Inoue M. Stimulus duration in working memory is represented by neuronal activity in the monkey prefrontal cortex. Eur J Neurosci. 2004;20(4):1069–80.

    PubMed  Google Scholar 

  36. Genovesio A, Tsujimoto S, Wise SP. Feature- and order-based timing representations in the frontal cortex. Neuron. 2009;63(2):254–66.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Meftah E-M, Bourgeon S, Chapman CE. Instructed delay discharge in primary and secondary somatosensory cortex within the context of a selective attention task. J Neurophysiol. 2009;101(5):2649–67.

    Google Scholar 

  38. Van Ede F, de Lange F, Jensen O, Maris E. Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations. J Neurosci. 2011;31(6):2016–24.

    PubMed  Google Scholar 

  39. Fujioka T, Trainor LJ, Large EW, Ross B. Internalized timing of isochronous sounds is represented in neuromagnetic β oscillations. J Neurosci. 2012;32(5):1791–802.

    PubMed  CAS  Google Scholar 

  40. Di Pellegrino G, Wise SP. Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J Neurosci. 1993;13(3):1227–43.

    PubMed  Google Scholar 

  41. Confais J, Kilavik BE, Ponce-Alvarez A, Riehle A. On the anticipatory precue activity in motor cortex. J Neurosci. 2012;32(44):15359–68.

    PubMed  CAS  Google Scholar 

  42. Weinrich M, Wise SP. The premotor cortex of the monkey. J Neurosci. 1982;2(9):1329–45.

    PubMed  CAS  Google Scholar 

  43. Romo R, Schultz W. Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex. Exp Brain Res. 1987;67(3):656–62.

    PubMed  CAS  Google Scholar 

  44. Schultz W, Romo R. Neuronal activity in the monkey striatum during the initiation of movements. Exp Brain Res. 1988;71(2):431–6.

    PubMed  CAS  Google Scholar 

  45. Crammond DJ, Kalaska JF. Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J Neurophysiol. 2000;84(2):986–1005.

    PubMed  CAS  Google Scholar 

  46. Lebedev MA, Wise SP. Oscillations in the premotor cortex: single-unit activity from awake, behaving monkeys. Exp Brain Res. 2000;130(2):195–215.

    PubMed  CAS  Google Scholar 

  47. Kilavik BE, Riehle A. Timing structures neuronal activity during preparation for action. In: Nobre AC, Coull JT, editors. Attention and time. Oxford: Oxford University Press; 2010. p. 257–71.

    Google Scholar 

  48. Durstewitz D. Self-organizing neural integrator predicts interval times through climbing activity. J Neurosci. 2003;23(12):5342–53.

    PubMed  CAS  Google Scholar 

  49. Durstewitz D. Neural representation of interval time. Neuroreport. 2004;15(5):745–9.

    PubMed  Google Scholar 

  50. Reutimann J, Yakovlev V, Fusi S, Senn W. Climbing neuronal activity as an event-based cortical representation of time. J Neurosci. 2004;24(13):3295–303.

    PubMed  CAS  Google Scholar 

  51. Okamoto H, Isomura Y, Takada M, Fukai T. Temporal integration by stochastic recurrent network dynamics with bimodal neurons. J Neurophysiol. 2007;97(6):3859–67.

    PubMed  Google Scholar 

  52. Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev. 1977;84(3):279–325.

    Google Scholar 

  53. Lowenstein G, Elster J. Choice over time. New York: Russell Sage; 1992. 399 p.

    Google Scholar 

  54. Berdyyeva TK, Olson CR. Relation of ordinal position signals to the expectation of reward and passage of time in four areas of the macaque frontal cortex. J Neurophysiol. 2011;105(5):2547–59.

    PubMed  PubMed Central  Google Scholar 

  55. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev. 1985;65(1):37–100.

    PubMed  CAS  Google Scholar 

  56. Mitzdorf U. Properties of cortical generators of event-related potentials. Pharmacopsychiatry. 1994;27(2):49–51.

    PubMed  CAS  Google Scholar 

  57. Logothetis NK, Kayser C, Oeltermann A. In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron. 2007;55(5):809–23.

    PubMed  CAS  Google Scholar 

  58. Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S. The local field potential reflects surplus spike synchrony. Cereb Cortex. 2011;21(12):2681–95.

    Google Scholar 

  59. Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, et al. Modeling the spatial reach of the LFP. Neuron. 2011;72(5):859–72.

    PubMed  Google Scholar 

  60. Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK. Inferring spike trains from local field potentials. J Neurophysiol. 2008;99(3):1461–76.

    PubMed  Google Scholar 

  61. Rasch M, Logothetis NK, Kreiman G. From neurons to circuits: linear estimation of local field potentials. J Neurosci. 2009;29(44):13785–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. WalterR WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature. 1964;203:380–4.

    Google Scholar 

  63. Blowers G, Ongley C, Shaw JC. The effect of reducing temporal expectancy on the contingent negative variation. Electroencephalogr Clin Neurophysiol. 1973;34(3):259–64.

    PubMed  CAS  Google Scholar 

  64. Ruchkin DS, McCalley MG, Glaser EM. Event related potentials and time estimation. Psychophysiology. 1977;14(5):451–5.

    PubMed  CAS  Google Scholar 

  65. Miniussi C, Wilding EL, Coull JT, Nobre AC. Orienting attention in time. Modulation of brain potentials. Br J Neurol. 1999;122(Pt 8):1507–18.

    Google Scholar 

  66. Macar F, Vidal F. The CNV peak: an index of decision making and temporal memory. Psychophysiology. 2003;40(6):950–4.

    PubMed  Google Scholar 

  67. Pfeuty M, Ragot R, Pouthas V. Relationship between CNV and timing of an upcoming event. Neurosci Lett. 2005;382(1–2):106–11.

    PubMed  CAS  Google Scholar 

  68. Praamstra P, Kourtis D, Kwok HF, Oostenveld R. Neurophysiology of implicit timing in serial choice reaction-time performance. J Neurosci. 2006;26(20):5448–55.

    PubMed  CAS  Google Scholar 

  69. Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci. 2009;12(1):70–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A. 2000;97(4):1867–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–13.

    Google Scholar 

  72. Miller R. Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int J Psychophysiol. 2007;64(1):18–23.

    PubMed  Google Scholar 

  73. Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol. 2000;38(3):315–36.

    PubMed  CAS  Google Scholar 

  74. Brunel N, Wang X-J. What determines the frequency of fast network oscillations with irregular neural discharges? I Synaptic dynamics and excitation-inhibition balance. J Neurophysiol. 2003;90(1):415–30.

    PubMed  Google Scholar 

  75. Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage. 2005;26(2):347–55.

    PubMed  CAS  Google Scholar 

  76. Buzsáki G. Rhythms of the brain. New York: Oxford University Press; 2006.

    Google Scholar 

  77. Ray S, Maunsell JHR. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron. 2010;67(5):885–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Berger H. Über das Elektrenkephalogramm des Menschen. III. Arch Für Psychiatr Nervenkrankh. 1931;94:16–60.

    Google Scholar 

  79. Jasper H, Penfield W. Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Arch Für Psychiatr Z Neurol. 1949;183:163–74.

    Google Scholar 

  80. Murthy VN, Fetz EE. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A. 1992;89(12):5670–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Murthy VN, Fetz EE. Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J Neurophysiol. 1996;76(6):3949–67.

    PubMed  CAS  Google Scholar 

  82. Roelfsema PR, Engel AK, König P, Singer W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature. 1997;385(6612):157–61.

    PubMed  CAS  Google Scholar 

  83. Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci U S A. 2004;101(26):9849–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Courtemanche R, Fujii N, Graybiel AM. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci. 2003;23(37):11741–52.

    PubMed  CAS  Google Scholar 

  85. Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93(4):2039–52.

    PubMed  Google Scholar 

  86. Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A. The ups and downs of β oscillations in sensorimotor cortex. Exp Neurol. 2013;245:15–26.

    PubMed  Google Scholar 

  87. Sanes JN, Donoghue JP. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci U S A. 1993;90(10):4470–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Donoghue JP, Sanes JN, Hatsopoulos NG, Gaál G. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J Neurophysiol. 1998;79(1):159–73.

    PubMed  CAS  Google Scholar 

  89. Classen J, Gerloff C, Honda M, Hallett M. Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol. 1998;79(3):1567–73.

    PubMed  CAS  Google Scholar 

  90. Saleh M, Reimer J, Penn R, Ojakangas CL, Hatsopoulos NG. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron. 2010;65(4):461–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Arnal LH. Predicting “When” using the motor system’s beta-band oscillations. Front Hum Neurosci. 2012;6:225.

    PubMed  PubMed Central  Google Scholar 

  92. McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(1):22–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Kilavik BE, Ponce-Alvarez A, Trachel R, Confais J, Takerkart S, Riehle A. Context-related frequency modulations of macaque motor cortical LFP beta oscillations. Cereb Cortex. 2012;22(9):2148–59.

    Google Scholar 

  94. Roux S, Mackay WA, Riehle A. The pre-movement component of motor cortical local field potentials reflects the level of expectancy. Behav Brain Res. 2006;169(2):335–51.

    PubMed  Google Scholar 

  95. Hebb DO. The organization of behavior. New York: Wiley; 1949.

    Google Scholar 

  96. Aertsen A, Gerstein G, Johannesma P. From neuron to assembly: neuronal organization and stimulus representation. In: Palm G, Aertsen A, editors. Brain theory. Heidelberg: Springer; 1986. p. 7–24.

    Google Scholar 

  97. Gerstein GL, Bedenbaugh P, Aertsen MH. Neuronal assemblies. IEEE Trans Biomed Eng. 1989;36(1):4–14.

    PubMed  CAS  Google Scholar 

  98. Abeles M. Corticonics: neural circuits of the cerebral cortex. Cambridge: Cambridge University Press; 1991. 280 p.

    Google Scholar 

  99. Aertsen AHJ, Gerstein G. Dynamic aspects of neuronal cooperativity: fast stimulus-locked modulations of effective connectivity. In: Krüger J, editor. Neuronal cooperativity. Heidelberg: Springer; 1991. p. 52–67.

    Google Scholar 

  100. Kilavik BE, Roux S, Ponce-Alvarez A, Confais J, Grün S, Riehle A. Long-term modifications in motor cortical dynamics induced by intensive practice. J Neurosci. 2009;29(40):12653–63.

    PubMed  CAS  Google Scholar 

  101. Rudolph M, Destexhe A. Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J Comput Neurosci. 2003;14(3):239–51.

    PubMed  Google Scholar 

  102. Grün S. Data-driven significance estimation for precise spike correlation. J Neurophysiol. 2009;101(3):1126–40.

    PubMed  PubMed Central  Google Scholar 

  103. Weinrich M, Wise SP, Mauritz KH. A neurophysiological study of the premotor cortex in the rhesus monkey. Br J Neurol. 1984;107(Pt 2):385–414.

    Google Scholar 

  104. Riehle A. Visually induced signal-locked neuronal activity changes in precentral motor areas of the monkey: hierarchical progression of signal processing. Brain Res. 1991;540(1–2):131–7.

    PubMed  CAS  Google Scholar 

  105. Riehle A, Requin J. Neuronal correlates of the specification of movement direction and force in four cortical areas of the monkey. Behav Brain Res. 1995;70(1):1–13.

    PubMed  CAS  Google Scholar 

  106. Crammond DJ, Kalaska JF. Differential relation of discharge in primary motor cortex and premotor cortex to movements versus actively maintained postures during a reaching task. Exp Brain Res. 1996;108(1):45–61.

    PubMed  CAS  Google Scholar 

  107. Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45(5):801–14.

    PubMed  CAS  Google Scholar 

  108. Kilavik BE, Confais J, Ponce-Alvarez A, Diesmann M, Riehle A. Evoked potentials in motor cortical local field potentials reflect task timing and behavioral performance. J Neurophysiol. 2010;104(5):2338–51.

    PubMed  Google Scholar 

  109. Vaadia E, Benson DA, Hienz RD, Goldstein Jr MH. Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. J Neurophysiol. 1986;56(4):934–52.

    PubMed  CAS  Google Scholar 

  110. Hoshi E, Tanji J. Functional specialization in dorsal and ventral premotor areas. Prog Brain Res. 2004;143:507–11.

    PubMed  Google Scholar 

  111. Hoshi E, Tanji J. Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J Neurophysiol. 2006;95(6):3596–616.

    PubMed  Google Scholar 

  112. Nakayama Y, Yamagata T, Tanji J, Hoshi E. Transformation of a virtual action plan into a motor plan in the premotor cortex. J Neurosci. 2008;28(41):10287–97.

    PubMed  CAS  Google Scholar 

  113. Yamagata T, Nakayama Y, Tanji J, Hoshi E. Processing of visual signals for direct specification of motor targets and for conceptual representation of action targets in the dorsal and ventral premotor cortex. J Neurophysiol. 2009;102(6):3280–94.

    PubMed  Google Scholar 

  114. Yamagata T, Nakayama Y, Tanji J, Hoshi E. Distinct information representation and processing for goal-directed behavior in the dorsolateral and ventrolateral prefrontal cortex and the dorsal premotor cortex. J Neurosci. 2012;32(37):12934–49.

    PubMed  CAS  Google Scholar 

  115. Riehle A, Requin J. Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol. 1989;61(3):534–49.

    PubMed  CAS  Google Scholar 

  116. Boussaoud D, Wise SP. Primate frontal cortex: effects of stimulus and movement. Exp Brain Res. 1993;95(1):28–40.

    PubMed  CAS  Google Scholar 

  117. Boussaoud D, Wise SP. Primate frontal cortex: neuronal activity following attentional versus intentional cues. Exp Brain Res. 1993;95(1):15–27.

    PubMed  CAS  Google Scholar 

  118. Kurata K. Information processing for motor control in primate premotor cortex. Behav Brain Res. 1994;61(2):135–42.

    PubMed  CAS  Google Scholar 

  119. Wise SP, di Pellegrino G, Boussaoud D. The premotor cortex and nonstandard sensorimotor mapping. Can J Physiol Pharmacol. 1996;74(4):469–82.

    PubMed  CAS  Google Scholar 

  120. Riehle A, Kornblum S, Requin J. Neuronal correlates of sensorimotor association in stimulus–response compatibility. J Exp Psychol Hum Percept Perform. 1997;23(6):1708–26.

    PubMed  CAS  Google Scholar 

  121. Shen L, Alexander GE. Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. J Neurophysiol. 1997;77(3):1171–94.

    PubMed  CAS  Google Scholar 

  122. Shen L, Alexander GE. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J Neurophysiol. 1997;77(3):1195–212.

    PubMed  CAS  Google Scholar 

  123. Bastian A, Schöner G, Riehle A. Preshaping and continuous evolution of motor cortical representations during movement preparation. Eur J Neurosci. 2003;18(7):2047–58.

    PubMed  Google Scholar 

  124. Wise SP, Weinrich M, Mauritz KH. Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Res. 1983;260(2):301–5.

    PubMed  CAS  Google Scholar 

  125. Miller J, Riehle A, Requin J. Effects of preliminary perceptual output on neuronal activity of the primary motor cortex. J Exp Psychol Hum Percept Perform. 1992;18(4):1121–38.

    PubMed  CAS  Google Scholar 

  126. Ledberg A, Bressler SL, Ding M, Coppola R, Nakamura R. Large-scale visuomotor integration in the cerebral cortex. Cereb Cortex. 2007;17(1):44–62.

    Google Scholar 

  127. Wise SP, Mauritz KH. Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set. Proc R Soc Lond B Biol Sci. 1985;223(1232):331–54.

    PubMed  CAS  Google Scholar 

  128. Hikosaka O, Sakamoto M, Usui S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol. 1989;61(4):814–32.

    PubMed  CAS  Google Scholar 

  129. Lauwereyns J, Takikawa Y, Kawagoe R, Kobayashi S, Koizumi M, Coe B, et al. Feature-based anticipation of cues that predict reward in monkey caudate nucleus. Neuron. 2002;33(3):463–73.

    PubMed  CAS  Google Scholar 

  130. Takikawa Y, Kawagoe R, Hikosaka O. Reward-dependent spatial selectivity of anticipatory activity in monkey caudate neurons. J Neurophysiol. 2002;87(1):508–15.

    PubMed  Google Scholar 

  131. Sakagami M, Niki H. Encoding of behavioral significance of visual stimuli by primate prefrontal neurons: relation to relevant task conditions. Exp Brain Res. 1994;97(3):423–36.

    PubMed  CAS  Google Scholar 

  132. Rathelot J-A, Strick PL. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci U S A. 2009;106(3):918–23.

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Riehle A, Grammont F, MacKay WA. Cancellation of a planned movement in monkey motor cortex. Neuroreport. 2006;17(3):281–5.

    PubMed  Google Scholar 

  134. Boussaoud D. Attention versus intention in the primate premotor cortex. Neuroimage. 2001;14(1 Pt 2):S40–5.

    PubMed  CAS  Google Scholar 

  135. Lebedev MA, Wise SP. Tuning for the orientation of spatial attention in dorsal premotor cortex. Eur J Neurosci. 2001;13(5):1002–8.

    PubMed  CAS  Google Scholar 

  136. Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35.

    PubMed  CAS  Google Scholar 

  137. Coull JT, Frith CD, Büchel C, Nobre AC. Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia. 2000;38(6):808–19.

    PubMed  CAS  Google Scholar 

  138. Boulinguez P, Jaffard M, Granjon L, Benraiss A. Warning signals induce automatic EMG activations and proactive volitional inhibition: evidence from analysis of error distribution in simple RT. J Neurophysiol. 2008;99(3):1572–8.

    PubMed  Google Scholar 

  139. Duque J, Ivry RB. Role of corticospinal suppression during motor preparation. Cereb Cortex. 2009;19(9):2013–24.

    Google Scholar 

  140. Stuphorn V, Emeric EE. Proactive and reactive control by the medial frontal cortex. Front Neuroeng. 2012;5:9.

    PubMed  PubMed Central  Google Scholar 

  141. Moody SL, Wise SP. A model that accounts for activity prior to sensory inputs and responses during matching-to-sample tasks. J Cogn Neurosci. 2000;12(3):429–48.

    PubMed  CAS  Google Scholar 

  142. Cohen MR, Maunsell JHR. Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci. 2009;12(12):1594–600.

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Sawaguchi T, Yamane I, Kubota K. Application of the GABA antagonist bicuculline to the premotor cortex reduces the ability to withhold reaching movements by well-trained monkeys in visually guided reaching task. J Neurophysiol. 1996;75(5):2150–6.

    PubMed  CAS  Google Scholar 

  144. Mirabella G, Pani P, Ferraina S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol. 2011;106(3):1454–66.

    PubMed  CAS  Google Scholar 

  145. Duque J, Labruna L, Verset S, Olivier E, Ivry RB. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci. 2012;32(3):806–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    PubMed  CAS  Google Scholar 

  147. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    PubMed  Google Scholar 

  148. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.

    PubMed  CAS  Google Scholar 

  149. Grün S, Diesmann M, Aertsen A. Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Neural Comput. 2002;14(1):81–119.

    PubMed  Google Scholar 

Download references

Acknowledgement

We thank Marcel de Haan for critically reading the manuscript. This work was supported by a grant from Fondation pour la Recherche Médicale (FRM) to J.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Confais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kilavik, B.E., Confais, J., Riehle, A. (2014). Signs of Timing in Motor Cortex During Movement Preparation and Cue Anticipation. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_7

Download citation

Publish with us

Policies and ethics