Skip to main content

Neural Dynamics Based Timing in the Subsecond to Seconds Range

  • Chapter
  • First Online:
Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

The brain must solve a wide range of different temporal problems, each of which can be defined by a relevant time scale and specific functional requirements. Experimental and theoretical studies suggest that some forms of timing reflect general and inherent properties of local neural networks. Like the ripples on a pond, neural networks represent rich dynamical systems that can produce time-varying patterns of activity in response to a stimulus. State-dependent network models propose that sensory timing arises from the interaction between incoming stimuli and the internal dynamics of recurrent neural circuits. A wide-variety of time-dependent neural properties, such as short-term synaptic plasticity, are important contributors to the internal dynamics of neural circuits. In contrast to sensory timing, motor timing requires that network actively generate appropriately timed spikes even in the absence of sensory stimuli. Population clock models propose that motor timing arises from internal dynamics of recurrent network capable of self-perpetuating activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liberman AM, Delattre PC, Gerstman LJ, Cooper FS. Tempo of frequency change as a cue for distinguishing classes of speech sounds. J Exp Psychol. 1956;52:127–37.

    Article  PubMed  CAS  Google Scholar 

  2. Scott DR. Duration as a cue to the perception of a phrase boundary. J Acoust Soc Am. 1982;71(4):996–1007.

    Article  PubMed  CAS  Google Scholar 

  3. Schirmer A. Timing speech: a review of lesion and neuroimaging findings. Brain Res Cogn Brain Res. 2004;21(2):269–87.

    Article  PubMed  Google Scholar 

  4. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues. Science. 1995;270(5234):303–4.

    Article  PubMed  CAS  Google Scholar 

  5. Breitenstein C, Van Lancker D, Daum I. The contribution of speech rate and pitch variation to the perception of vocal emotions in a German and an American sample. Cogn Emot. 2001;15(1):57–79.

    Article  Google Scholar 

  6. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  PubMed  CAS  Google Scholar 

  7. Buonomano DV, Mauk MD. Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 1994;6:38–55.

    Article  Google Scholar 

  8. Mauk MD, Donegan NH. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn Mem. 1997;3:130–58.

    Article  Google Scholar 

  9. Medina JF, Mauk MD. Computer simulation of cerebellar information processing. Nat Neurosci. 2000;3(Suppl):1205–11.

    Article  PubMed  CAS  Google Scholar 

  10. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:32 (Original Research Article).

    Article  Google Scholar 

  11. Broome BM, Jayaraman V, Laurent G. Encoding and decoding of overlapping odor sequences. Neuron. 2006;51(4):467–82.

    Article  PubMed  CAS  Google Scholar 

  12. Engineer CT, Perez CA, Chen YH, Carraway RS, Reed AC, Shetake JA, et al. Cortical activity patterns predict speech discrimination ability. Nat Neurosci. 2008;11:603–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Churchland MM, Yu BM, Sahani M, Shenoy KV. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr Opin Neurobiol. 2007;17(5):609–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Schnupp JW, Hall TM, Kokelaar RF, Ahmed B. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci. 2006;26(18):4785–95.

    Article  PubMed  CAS  Google Scholar 

  15. Itskov V, Curto C, Pastalkova E, Buzsáki G. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J Neurosci. 2011;31(8):2828–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Jin DZ, Fujii N, Graybiel AM. Neural representation of time in cortico-basal ganglia circuits. Proc Natl Acad Sci U S A. 2009;106(45):19156–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Lebedev MA, O’Doherty JE, Nicolelis MAL. Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol. 2008;99(1):166–86.

    Article  PubMed  Google Scholar 

  18. Crowe DA, Averbeck BB, Chafee MV. Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex. J Neurosci. 2010;30(35):11640–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Hahnloser RHR, Kozhevnikov AA, Fee MS. An ultra-sparse code underlies the generation of neural sequence in a songbird. Nature. 2002;419:65–70.

    Article  PubMed  CAS  Google Scholar 

  20. Long MA, Jin DZ, Fee MS. Support for a synaptic chain model of neuronal sequence generation. Nature. 2010;468(7322):394–9. doi:10.1038/nature09514.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zucker RS. Short-term synaptic plasticity. Annu Rev Neurosci. 1989;12:13–31.

    Article  PubMed  CAS  Google Scholar 

  22. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.

    Article  PubMed  CAS  Google Scholar 

  23. Newberry NR, Nicoll RA. A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol. 1984;348(1):239–54.

    Google Scholar 

  24. Buonomano DV, Merzenich MM. Net interaction between different forms of short-term synaptic plasticity and slow-IPSPs in the hippocampus and auditory cortex. J Neurophysiol. 1998;80:1765–74.

    PubMed  CAS  Google Scholar 

  25. Batchelor AM, Madge DJ, Garthwaite J. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience. 1994;63(4):911–5.

    Article  PubMed  CAS  Google Scholar 

  26. Johnston D, Wu SM. Foundations of cellular neurophysiology. Cambridge: MIT Press; 1995.

    Google Scholar 

  27. Hooper SL, Buchman E, Hobbs KH. A computational role for slow conductances: single-neuron models that measure duration. Nat Neurosci. 2002;5:551–6.

    Article  Google Scholar 

  28. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.

    Article  PubMed  CAS  Google Scholar 

  29. Burnashev N, Rozov A. Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium. 2005;37(5):489–95.

    Article  PubMed  CAS  Google Scholar 

  30. Lester RAJ, Clements JD, Westbrook GL, Jahr CE. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature. 1990;346(6284):565–7.

    Article  PubMed  CAS  Google Scholar 

  31. Reyes A, Sakmann B. Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J Neurosci. 1999;19:3827–35.

    PubMed  CAS  Google Scholar 

  32. Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A. 1998;95:5323–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Dobrunz LE, Stevens CF. Response of hippocampal synapses to natural stimulation patterns. Neuron. 1999;22(1):157–66.

    Article  PubMed  CAS  Google Scholar 

  34. Fukuda A, Mody I, Prince DA. Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. J Neurophysiol. 1993;70(1):448–52.

    PubMed  CAS  Google Scholar 

  35. Lambert NA, Wilson WA. Temporally distinct mechanisms of use-dependent depression at inhibitory synapses in the rat hippocampus in vitro. J Neurophysiol. 1994;72(1):121–30.

    PubMed  CAS  Google Scholar 

  36. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    Article  PubMed  Google Scholar 

  37. Buonomano DV, Merzenich MM. Temporal information transformed into a spatial code by a neural network with realistic properties. Science. 1995;267:1028–30.

    Article  PubMed  CAS  Google Scholar 

  38. Lee TP, Buonomano DV. Unsupervised formation of vocalization-sensitive neurons: a cortical model based on short-term and homeostatic plasticity. Neural Comput. 2012;24:2579–603.

    Article  PubMed  Google Scholar 

  39. Buonomano DV. Decoding temporal information: a model based on short-term synaptic plasticity. J Neurosci. 2000;20:1129–41.

    PubMed  CAS  Google Scholar 

  40. Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14:2531–60.

    Article  PubMed  Google Scholar 

  41. Maass W, Natschläger T, Markram H. A model of real-time computation in generic neural microcircuits. Adv Neural Inf Process Syst. 2003;15:229–36.

    Google Scholar 

  42. Haeusler S, Maass W. A Statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cereb Cortex. 2007;17(1):149–62.

    Google Scholar 

  43. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Edwards CJ, Leary CJ, Rose GJ. Counting on inhibition and rate-dependent excitation in the auditory system. J Neurosci. 2007;27(49):13384–92.

    Google Scholar 

  45. Edwards CJ, Leary CJ, Rose GJ. Mechanisms of long-interval selectivity in midbrain auditory neurons: roles of excitation, inhibition, and plasticity. J Neurophysiol. 2008;100(6):3407–16.

    Google Scholar 

  46. Rose G, Leary C, Edwards C. Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011;197(1):97–108.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Carlson BA. Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior. J Neurosci. 2009;29(30):9417–28.

    Google Scholar 

  48. Kostarakos K, Hedwig B. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci. 2012;32(28):9601–12.

    Google Scholar 

  49. Shepherd GM. The synaptic organization of the brain. New York: Oxford University; 1998.

    Google Scholar 

  50. Carvalho TP, Buonomano DV. Differential effects of excitatory and inhibitory plasticity on synaptically driven neuronal input–output functions. Neuron. 2009;61(5):774–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Pouille F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science. 2001;293:1159–63.

    Article  PubMed  CAS  Google Scholar 

  52. Edwards CJ, Alder TB, Rose GJ. Auditory midbrain neurons that count. Nat Neurosci. 2002;5(10):934–6.

    Article  PubMed  CAS  Google Scholar 

  53. Alder TB, Rose GJ. Long-term temporal integration in the anuran auditory system. Nat Neurosci. 1998;1:519–23.

    Article  PubMed  CAS  Google Scholar 

  54. Sadagopan S, Wang X. Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J Neurosci. 2009;29(36):11192–202.

    Google Scholar 

  55. Zhou X, de Villers-Sidani É, Panizzutti R, Merzenich MM. Successive-signal biasing for a learned sound sequence. Proc Natl Acad Sci U S A. 2010;107(33):14839–44.

    Google Scholar 

  56. Brosch M, Schreiner CE. Sequence sensitivity of neurons in cat primary auditory cortex. Cereb Cortex. 2000;10(12):1155–67.

    Google Scholar 

  57. Keele SW, Pokorny RA, Corcos DM, Ivry R. Do perception and motor production share common timing mechanisms: a correctional analysis. Acta Psychol (Amst). 1985;60(2–3):173–91.

    Article  CAS  Google Scholar 

  58. Ivry RB, Hazeltine RE. Perception and production of temporal intervals across a range of durations – evidence for a common timing mechanism. J Exp Psychol Hum Percept Perform. 1995;21(1):3–18 [Article].

    Google Scholar 

  59. Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.

    PubMed  CAS  Google Scholar 

  60. Raymond J, Lisberger SG, Mauk MD. The cerebellum: a neuronal learning machine? Science. 1996;272:1126–32.

    Article  PubMed  CAS  Google Scholar 

  61. Laje R, Cheng K, Buonomano DV. Learning of temporal motor patterns: an analysis of continuous vs. reset timing. Front Integr Neurosci. 2011;5:61 (Original Research).

    Google Scholar 

  62. Buonomano DV, Laje R. Population clocks: motor timing with neural dynamics. Trends Cogn Sci. 2010;14(12):520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Buonomano DV, Karmarkar UR. How do we tell time? Neuroscientist. 2002;8(1):42–51.

    Article  PubMed  Google Scholar 

  64. Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci. 2000;20(14):5516–25.

    PubMed  CAS  Google Scholar 

  65. Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Netw. 2007;20(3):290–7.

    Article  PubMed  Google Scholar 

  66. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.

    Article  PubMed  CAS  Google Scholar 

  67. Sussillo D, Toyoizumi T, Maass W. Self-tuning of neural circuits through short-term synaptic plasticity. J Neurophysiol. 2007;97(6):4079–95.

    Article  PubMed  Google Scholar 

  68. Jaeger H, Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science. 2004;304(5667):78–80.

    Article  PubMed  CAS  Google Scholar 

  69. Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural networks. Neuron. 2009;63(4):544–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Pastalkova E, Itskov V, Amarasingham A, Buzsaki G. Internally generated cell assembly sequences in the rat hippocampus. Science. 2008;321(5894):1322–7.

    Google Scholar 

  71. Buonomano DV. Timing of neural responses in cortical organotypic slices. Proc Natl Acad Sci U S A. 2003;100:4897–902.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Johnson HA, Goel A, Buonomano DV. Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nat Neurosci. 2010;13(8):917–9. doi:10.1038/nn.2579.

  73. Buonomano DV, Maass W. State-dependent Computations: Spatiotemporal Processing in Cortical Networks. Nat Rev Neurosci. 2009;10:113–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean V. Buonomano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buonomano, D.V. (2014). Neural Dynamics Based Timing in the Subsecond to Seconds Range. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_6

Download citation

Publish with us

Policies and ethics