Skip to main content

Neurocomputational Models of Time Perception

  • Chapter
  • First Online:
Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Mathematical modeling is a useful tool for understanding the neurodynamical and computational mechanisms of cognitive abilities like time perception, and for linking neurophysiology to psychology. In this chapter, we discuss several biophysical models of time perception and how they can be tested against experimental evidence. After a brief overview on the history of computational timing models, we list a number of central psychological and physiological findings that such a model should be able to account for, with a focus on the scaling of the variability of duration estimates with the length of the interval that needs to be estimated. The functional form of this scaling turns out to be predictive of the underlying computational mechanism for time perception. We then present four basic classes of timing models (ramping activity, sequential activation of neuron populations, state space trajectories and neural oscillators) and discuss two specific examples in more detail. Finally, we review to what extent existing theories of time perception adhere to the experimental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All these models deal with the perception of single temporal intervals in the subsecond to minutes range. See [29, 36] for extensions to sequences of intervals, and [37] for longer and shorter durations.

  2. 2.

    More precisely, the scalar property requires that the entire distribution of a time estimate scales with the physical duration, i.e. it also includes the linear psychophysical law.

  3. 3.

    Furthermore, it is required that the temporal correlations of the process decay to zero for sufficiently long times.

  4. 4.

    It should be noted, however, that there is a computational study which considered such failures as a possible basis for the scalar property [88].

References

  1. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250–5.

    PubMed  CAS  Google Scholar 

  2. Wearden JH, Lejeune H. Scalar properties in human timing: conformity and violations. Q J Exp Psychol. 2008;61:569–87.

    CAS  Google Scholar 

  3. Lejeune H, Wearden JH. Scalar properties in animal timing: conformity and violations. Q J Exp Psychol. 2006;59:1875–908.

    Google Scholar 

  4. Eisler H. Experiments on subjective duration 1868–1975: a collection of power function exponents. Psychol Bull. 1976;83(6):1154–71.

    PubMed  CAS  Google Scholar 

  5. Grondin S. From physical time to the first and second moments of psychological time. Psychol Bull. 2001;127(1):22–44.

    PubMed  CAS  Google Scholar 

  6. Gibbon J. Origins of scalar timing. Learn Motiv. 1991;22:3–38.

    Google Scholar 

  7. Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev. 1977;84:279–325.

    Google Scholar 

  8. Seung HS, Lee DD, Reis BY, Tank DW. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron. 2000;26(1):259–71.

    PubMed  CAS  Google Scholar 

  9. Taatgen NA, van Rijn H, Anderson J. An integrated theory of prospective time interval estimation: the role of cognition, attention, and learning. Psychol Rev. 2007;114(3):577.

    PubMed  Google Scholar 

  10. Allan LG. The influence of the scalar timing model on human timing research. Behav Processes. 1998;444:101–17.

    Google Scholar 

  11. Creelman CD. Human discrimination of auditory duration. J Acoust Soc Am. 1962;34:582–93.

    Google Scholar 

  12. Eagleman D. Human time perception and its illusions. Curr Opin Neurobiol. 2008;18(2):131–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6:755–65.

    PubMed  CAS  Google Scholar 

  14. Durstewitz D. Self-organizing neural integrator predicts interval times through climbing activity. J Neurosci. 2003;23(12):5342–53.

    PubMed  CAS  Google Scholar 

  15. Hass J, Blaschke S, Rammsayer T, Herrmann JM. A neurocomputational model for optimal temporal processing. J Comput Neurosci. 2008;25:449–64.

    PubMed  Google Scholar 

  16. Treisman M. Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychol Monogr. 1963;77(13):1–31.

    PubMed  CAS  Google Scholar 

  17. Jones MR. Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychol Rev. 1976;83:323–55.

    PubMed  CAS  Google Scholar 

  18. Jones MR, Boltz M. Dynamic attending and responses to time. Psychol Rev. 1989;96(3):459–91.

    PubMed  CAS  Google Scholar 

  19. Jones MR. Attending to sound patterns and the role of entrainment. In: Nobre AC, Coull JT, editors. Attention and time. Oxford: Oxford University Press; 2010. p. 137–330.

    Google Scholar 

  20. Rumelhart DE McClelland JL. Parallel distributed processing: explorations in the microstructure of cognition. MIT Press; 1987.

    Google Scholar 

  21. Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45(3):195–206.

    PubMed  CAS  Google Scholar 

  22. Desmond JE, Moore JW. Adaptive timing in neural networks: the conditioned response. Biol Cybern. 1988;58(6):405–15.

    PubMed  CAS  Google Scholar 

  23. Grossberg S, Schmajuk NA. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 1989;2:79–102.

    Google Scholar 

  24. Carr CE, Konishi M. A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci. 1990;10(10):3227–46.

    PubMed  CAS  Google Scholar 

  25. Church RM, Broadbent HA. Alternative representations of time, number, and rate. Cognition. 1990;37(1):55–81.

    PubMed  CAS  Google Scholar 

  26. Miall C. The storage of time intervals using oscillating neurons. Neural Comput. 1989;1(3):359–71.

    Google Scholar 

  27. Buonomano DV, Mauk MD. Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 1994;6(1):38–55.

    Google Scholar 

  28. Buonomano DV, Merzenich MM. Temporal information transformed into a spatial code by a neural network with realistic properties. Science. 1995;267:1028–30.

    PubMed  CAS  Google Scholar 

  29. Buonomano DV. Decoding temporal information: a model based on short-term synaptic plasticity. J Neurosci. 2000;20(3):1129–41.

    PubMed  CAS  Google Scholar 

  30. Tieu KH, Keidel AL, McGann JP, Faulkner B, Brown TH. Perirhinal-amygdala circuit-level computational model of temporal encoding in fear conditioning. Psychobiology. 1999;27(1):1–25.

    Google Scholar 

  31. Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res. 2004;21:139–70.

    Google Scholar 

  32. Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci. 2000;20(14):5516–25.

    PubMed  CAS  Google Scholar 

  33. Yamazaki T, Tanaka S. Neural modeling of an internal clock. Neural Comput. 2006; 17:1032–58.

    Google Scholar 

  34. Simen P, Balci F, Cohen JD, Holmes P. A model of interval timing by neural integration. J Neurosci. 2011;31(25):9238–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Kitano K, Okamoto H, Fukai T. Time representing cortical activities: two models inspired by prefrontal persistent activity. Biol Cybern. 2003;88:387–94.

    PubMed  CAS  Google Scholar 

  36. Hass J, Blaschke S, Rammsayer T, Herrmann JM. Detection of irregularities in auditory sequences: a neural-network approach to temporal processing. In: Mayor J, Ruh N, Plunkett K, editors. Proceedings of the NCPW11. World Scientific; 2009. p. 167–78.

    Google Scholar 

  37. Mauk MM, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    PubMed  CAS  Google Scholar 

  38. Killeen PR, Fetterman JG. A behavioral theory of timing. Psychol Rev. 1988;95:274–95.

    PubMed  CAS  Google Scholar 

  39. Staddon JER, Higa JJ. Time and memory: towards a pacemaker-free theory of interval timing. J Exp Anal Behav. 1999;71(2):215–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Rammsayer TH. Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol. 1999;52:273–86.

    CAS  Google Scholar 

  42. Meck WH. Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav. 1986;25:1185–9.

    PubMed  CAS  Google Scholar 

  43. Gibbon J, Malapani C, Dale CL, Gallistel CR. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7:170–84.

    PubMed  CAS  Google Scholar 

  44. Bizo LA, Chua JYM, Sanabria F, Killeen PR. The failure of Weber’s law in time perception and production. Behav Processes. 2006;71:201–10.

    PubMed  Google Scholar 

  45. Drake C, Botte MC. Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Percept Psychophys. 1993;54(3):277–86.

    PubMed  CAS  Google Scholar 

  46. Getty DJ. Counting processes in human timing. Percept Psychophys. 1976;20:191–7.

    Google Scholar 

  47. Allan LG. The perception of time. Percept Psychophys. 1979;26(5):340–54.

    Google Scholar 

  48. McDonnell MD, Abbott D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol. 2009;5(5):e1000348.

    PubMed  PubMed Central  Google Scholar 

  49. Garrett DD, Samanez-Larkin GR, MacDonald SWS, Lindenberger U, McIntosh A, Grady CL. Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev. 2013;37(4):610–24.

    PubMed  PubMed Central  Google Scholar 

  50. Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of applications. Clin Neurophysiol. 2004;115(2):267–81.

    PubMed  Google Scholar 

  51. Durstewitz D, Deco G. Computational significance of transient dynamics in cortical networks. Eur J Neurosci. 2008;27(1):217–27.

    PubMed  Google Scholar 

  52. Paninski L, Pillow JW, Simoncelli EP. Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput. 2004;16:2533–61.

    PubMed  Google Scholar 

  53. Pouget A, Dayan P, Zemel RS. Inference and computation with population codes. Annu Rev Neurosci. 2003;26:381–410.

    PubMed  CAS  Google Scholar 

  54. Hass J, Herrmann JM. The neural representation of time: an information-theoretic perspective. Neural Comput. 2012;24(6):1519–52.

    PubMed  Google Scholar 

  55. Ahrens M, Sahani M. Inferring elapsed time from stochastic neural processes. In: Platt JC, Koller D, Singer Y, Roweis S, editors. NIPS 20. Cambridge: MIT Press; 2008. p. 1–8.

    Google Scholar 

  56. Almeida R, Ledberg A. A biologically plausible model of time-scale invariant interval timing. J Comput Neurosci. 2010;28:155–75.

    PubMed  PubMed Central  Google Scholar 

  57. Escola S, Eisele M, Miller K, Paninski L. Maximally reliable Markov chains under energy constraints. Neural Comput. 2009;21(7):1863–912.

    PubMed  PubMed Central  Google Scholar 

  58. Shapiro JL, Wearden J. Reinforcement learning and time perception – a model of animal experiments. In: Dietterich TG, Becker S, Ghahramani Z, editors. NIPS 14. Cambridge: MIT Press. p. 115–22.

    Google Scholar 

  59. Okamoto H, Fukai T. Neural mechanism for a cognitive timer. Phys Rev Lett. 2001;86(17):3919–22.

    PubMed  CAS  Google Scholar 

  60. Reutimann J, Yakovlev V, Fusi S, Senn W. Climbing neuronal activity as an event-based cortical representation of time. J Neurosci. 2004;24(13):3295–303.

    PubMed  CAS  Google Scholar 

  61. Durstewitz D. Neural representation of interval time. Neuroreport. 2004;15:745–9.

    PubMed  Google Scholar 

  62. Lebedev MA, O’Doherty JE, Nicolelis MAL. Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol. 2008;99:166–86.

    PubMed  Google Scholar 

  63. Roux S, Coulmance M, Riehle A. Context-related representation of timing processes in monkey motor cortex. Eur J Neurosci. 2003;18:1011–6.

    PubMed  Google Scholar 

  64. Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2003;38:317–27.

    PubMed  CAS  Google Scholar 

  65. Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci. 2009;12(4):502–7.

    PubMed  CAS  Google Scholar 

  66. Niki H, Watanabe M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 1979;171(2):213–24.

    PubMed  CAS  Google Scholar 

  67. Brody C, Hernandez A, Zainos A, Romo R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex. 2003;13(11):1196–207.

    PubMed  Google Scholar 

  68. Rainer G, Rao CS, Miller EK. Prospective coding for objects in primate prefrontal cortex. J Neurosci. 1999;19(13):5493–505.

    PubMed  CAS  Google Scholar 

  69. Quintana J, Fuster JM. From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb Cortex. 1999;9(3):213–21.

    PubMed  CAS  Google Scholar 

  70. Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T, et al. Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature. 2001;412(6846):546–8.

    PubMed  CAS  Google Scholar 

  71. Andrade R. Cell excitation enhances muscarinic cholinergic responses in rat association cortex. Brain Res. 1991;548(1):81–93.

    PubMed  CAS  Google Scholar 

  72. Haj-Dahmane S, Andrade R. Muscarinic receptors regulate two different calcium-dependent non-selective cation currents in rat prefrontal cortex. Eur J Neurosci. 1999;11(6):1973–80.

    PubMed  CAS  Google Scholar 

  73. Helmchen F, Imoto K, Sakmann B. Ca2+ buffering and action potential-evoked Ca2+ signal. Biophys J. 1996;70(2):1069–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001;24(8):455–63.

    PubMed  CAS  Google Scholar 

  75. Machens CK, Romo R, Brody CD. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science. 2005;307(5712):1121–4.

    PubMed  CAS  Google Scholar 

  76. Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275(5297):213–5.

    PubMed  CAS  Google Scholar 

  77. Bi GQ, Poo MM. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci. 2001;24(1):139–66.

    PubMed  CAS  Google Scholar 

  78. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  79. Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.

    PubMed  Google Scholar 

  80. Macar F, Vidal F, Casini L. The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res. 1999;125(3):271–80.

    PubMed  CAS  Google Scholar 

  81. Macar F, Vidal F. Event-related potentials as indices of time processing: a review. J Psychophysiol. 2004;18:89–104.

    Google Scholar 

  82. Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18:145–52.

    PubMed  CAS  Google Scholar 

  83. Bal T, McCormick DA. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol. 1993;468(1):669–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Egorov AV, Hamam BN, Fransén E, Hasselmo ME, Alonso AA. Graded persistent activity in entorhinal cortex neurons. Nature. 2002;420(6912):173–8.

    PubMed  CAS  Google Scholar 

  85. Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron. 2006;49(5):735–46.

    PubMed  Google Scholar 

  86. Hass J, Farkhooi F, Durstewitz D. Dopaminergic modulation of time perception. Front Comput Neurosci. Conference Abstract: Bernstein Conference on Computational Neuroscience; 2010.

    Google Scholar 

  87. Buonomano DV. A learning rule for the emergence of stable dynamics and timing in recurrent networks. J Neurophysiol. 2005;94:2275–83.

    PubMed  Google Scholar 

  88. Killeen PR, Taylor T. How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgments. Psychol Rev. 2000;107:430–59.

    PubMed  CAS  Google Scholar 

  89. Abeles M. Corticonics: neural circuits of the cerebral cortex. Cambridge: Cambridge University Press; 1991.

    Google Scholar 

  90. Herrmann JM, Hertz JA, Prügel-Bennet A. Analysis of synfire chains. Network Comput Neural. 1995;6:403–14.

    Google Scholar 

  91. Diesmann M, Gewaltig MO, Aertsen A. Stable propagation of synchronous spiking in cortical neural networks. Nature. 1999;402:529–33.

    PubMed  CAS  Google Scholar 

  92. Riehle A, Grün S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science. 1997;278(5345):1950–3.

    Google Scholar 

  93. Bienenstock E. A model of neocortex. Network Comput Neural. 1995;6:179–224.

    Google Scholar 

  94. Abeles M. Synfire chains. Scholarpedia. 2009;4(7):1441.

    Google Scholar 

  95. Abeles M, Gat I. Detecting precise firing sequences in experimental data. J Neurosci Methods. 2001;107:141–54.

    PubMed  CAS  Google Scholar 

  96. Grün S. Data-driven significance estimation for precise spike correlation. J Neurophysiol. 2009;101:1126–40.

    PubMed  PubMed Central  Google Scholar 

  97. Beggs J, Plenz D. Neuronal avalanches in neocortical circuits. J Neurosci. 2003;23:11167–77.

    PubMed  CAS  Google Scholar 

  98. Izhikevich EM. Polychronization: computation with spikes. Neural Comput. 2006;18(2):245–82.

    PubMed  Google Scholar 

  99. McLelland D, Paulsen O. Cortical songs revisited: a lesson in statistics. Neuron. 2007;53(3):413–25.

    Google Scholar 

  100. Yumoto N, Lu X, Henry TR, Miyachi S, Nambu A, Fukai T, et al. A neural correlate of the processing of multi-second time intervals in primate prefrontal cortex. PLoS One. 2011;6(4):e19168.

    Google Scholar 

  101. Matell MS, Shea-Brown E, Gooch C, Wilson AG, Rinzel J. A heterogeneous population code for elapsed time in rat medial agranular cortex. Behav Neurosci. 2011;125(1):54.

    PubMed  PubMed Central  Google Scholar 

  102. Jin DZ, Fujii N, Graybiel AM. Neural representation of time in cortico-basal ganglia circuits. Proc Natl Acad Sci U S A. 2009;106(45):19156–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Genovesio A, Tsujimoto S, Wise SP. Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol. 2006;95:3281–5.

    PubMed  PubMed Central  Google Scholar 

  104. Matell MS, Meck WH, Nicolelis MAL. Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci. 2003;117(4):760–73.

    PubMed  Google Scholar 

  105. Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14(11):2531–60.

    PubMed  Google Scholar 

  106. Hyman JM, Ma L, Balaguer-Ballester E, Durstewitz D, Seamans JK. Contextual encoding by ensembles of medial prefrontal cortex neurons. Proc Natl Acad Sci U S A. 2012;109(13):5086–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Buzsáki G, da Silva FL. High frequency oscillations in the intact brain. Prog Neurobiol. 2012;98(3):241–9.

    PubMed  Google Scholar 

  108. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53(1):63–88.

    PubMed  Google Scholar 

  109. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137(4):1087–106.

    PubMed  CAS  Google Scholar 

  110. Grondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys. 2010;72(3):561–82.

    PubMed  Google Scholar 

  111. Barnes R, Jones MR. Expectancy, attention, and time. Cogn Psychol. 2000;41(3):254–311.

    PubMed  CAS  Google Scholar 

  112. Oprisan SA, Buhusi CV. Modeling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons. Front Integr Neurosci. 2011;5:52.

    PubMed  PubMed Central  Google Scholar 

  113. Grossberg S. Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw. 2012;37:1–47.

    PubMed  Google Scholar 

  114. Hass J, Blaschke S, Herrmann JM. Cross-modal distortion of time perception: demerging the effects of observed and performed motion. PLoS One. 2012;7(6):e38092.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Jazayeri M, Shadlen MN. Temporal context calibrates interval timing. Nat Neurosci. 2010;13(8):1020–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Ley I, Haggard P, Yarrow K. Optimal integration of auditory and vibrotactile information for judgments of temporal order. J Exp Psychol Hum Percept Perform. 2009;35(4):1005.

    PubMed  Google Scholar 

  117. Burr D, Banks MS, Morrone MC. Auditory dominance over vision in the perception of interval duration. Exp Brain Res. 2009;198(1):49–57.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the German ministry for education and research (BMBF, 01GQ1003B) and the Deutsche Forschungsgemeinschaft to D.D. (DFG, Du 354/6-1 & 7-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Hass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hass, J., Durstewitz, D. (2014). Neurocomputational Models of Time Perception. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_4

Download citation

Publish with us

Policies and ethics