Skip to main content

Music Perception: Information Flow Within the Human Auditory Cortices

  • Chapter
  • First Online:
Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Information processing of all acoustic stimuli involves temporal lobe regions referred to as auditory cortices, which receive direct afferents from the auditory thalamus. However, the perception of music (as well as speech or spoken language) is a complex process that also involves secondary and association cortices that conform a large functional network. Using different analytical techniques and stimulation paradigms, several studies have shown that certain areas are particularly sensitive to specific acoustic characteristics inherent to music (e.g., rhythm). This chapter reviews the functional anatomy of the auditory cortices, and highlights specific experiments that suggest the existence of distinct cortical networks for the perception of music and speech.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hackett T. The comparative anatomy of the primate auditory cortex. In: Ghazanfar A, editor. Primate audition. Boca Raton: CRC; 2002.

    Google Scholar 

  2. Hackett TA, Preuss TM, Kaas JH. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol. 2001;441(3):197–222.

    Article  PubMed  CAS  Google Scholar 

  3. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage. 2001;13(4):684–701.

    Article  PubMed  CAS  Google Scholar 

  4. Morosan P, Schleicher A, Amunts K, Zilles K. Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol (Berl). 2005;210(5–6):401–6.

    Article  CAS  Google Scholar 

  5. Brodmann K. Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth; 1909.

    Google Scholar 

  6. Hackett TA, Stepniewska I, Kaas JH. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol. 1998a;394:475–95.

    Article  PubMed  CAS  Google Scholar 

  7. Hackett TA. Information flow in the auditory cortical network. Hear Res. 2011;271(1–2):133–46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A. 2000;97(22):11793–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, et al. Functional properties of human auditory cortical fields. Front Syst Neurosci. 2010;4:155.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bailey L, Abolmaesumi P, Tam J, Morosan P, Cusack R, Amunts K, et al. Customised cytoarchitectonic probability maps using deformable registration: primary auditory cortex. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):760–8.

    PubMed  Google Scholar 

  11. Carpenter MB. Neuroanatomía: Fundamentos. Editorial Médica Panamericana; 1994.

    Google Scholar 

  12. Afifi A, Bergman RA. Functional neuroanatomy: text and atlas, 2nd edition: text and Atlas. McGraw Hill Professional; 2005.

    Google Scholar 

  13. Brugge JF. Patterns of organization in auditory cortex. J Acoust Soc Am. 1985;78(1 Pt 2):353–9.

    Article  PubMed  CAS  Google Scholar 

  14. Seldon HL. Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res. 1981;229(2):295–310.

    Article  PubMed  CAS  Google Scholar 

  15. Seldon HL. Structure of human auditory cortex. Cytoarchitectonics and dendritic distributions. Brain Res. 1981;229(2):277–94.

    Article  PubMed  CAS  Google Scholar 

  16. Seldon HL. Structure of human auditory cortex. III. Statistical analysis of dendritic trees. Brain Res. 1982;249(2):211–21.

    Article  PubMed  CAS  Google Scholar 

  17. Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M. Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci. 2011;31(40):14067–75.

    Article  PubMed  Google Scholar 

  18. Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ. Spectral and temporal processing in human auditory cortex. Cereb Cortex 2002;12(2):140–9.

    Google Scholar 

  19. Woods DL, Stecker GC, Rinne T, Herron TJ, Cate AD, Yund EW, et al. Functional maps of human auditory cortex: effects of acoustic features and attention. PLoS One. 2009;4(4):e5183.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Langers DRM, Backes WH, van Dijk P. Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples. Neuroimage. 2003;20(1):265–75.

    Article  PubMed  Google Scholar 

  21. Humphries C, Liebenthal E, Binder JR. Tonotopic organization of human auditory cortex. Neuroimage. 2010;50(3):1202–11.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Price CJ. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci. 2010;1191:62–88.

    Article  PubMed  Google Scholar 

  23. Schönwiesner M, Rübsamen R, von Cramon DY. Spectral and temporal processing in the human auditory cortex–revisited. Ann N Y Acad Sci. 2005;1060:89–92.

    Article  PubMed  Google Scholar 

  24. Upadhyay J, Silver A, Knaus TA, Lindgren KA, Ducros M, Kim D-S, et al. Effective and structural connectivity in the human auditory cortex. J Neurosci. 2008;28(13):3341–9.

    Article  PubMed  CAS  Google Scholar 

  25. Rauschecker JP, Scott SK. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci. 2009;12(6):718–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Okada K, Rong F, Venezia J, Matchin W, Hsieh I-H, Saberi K, et al. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. Cereb Cortex. 2010;20(10):2486–95.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature. 2000;403(6767):309–12.

    Article  PubMed  CAS  Google Scholar 

  28. Belin P, Zatorre RJ, Ahad P. Human temporal-lobe response to vocal sounds. Brain Res Cogn Brain Res. 2002;13(1):17–26.

    Article  PubMed  Google Scholar 

  29. Dehaene S, Dupoux E, Mehler J, Cohen L, Paulesu E, Perani D, et al. Anatomical variability in the cortical representation of first and second language. Neuroreport. 1997;8(17):3809–15.

    Article  PubMed  CAS  Google Scholar 

  30. Zatorre RJ, Schönwiesner M. Cortical speech and music processes revealed by functional neuroimaging. In: Winer JA, Schreiner CE, editors. Audit cortex [Internet]. Springer US; 2011 [cited 2012 Oct 8]. p. 657–77. http://www.springerlink.com/content/u5p3716n15640g73/abstract/.

  31. Schönwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Näätänen R. Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol. 2007;97(3):2075–82.

    Article  PubMed  Google Scholar 

  32. Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD. The processing of temporal pitch and melody information in auditory cortex. Neuron. 2002;36(4):767–76.

    Article  PubMed  CAS  Google Scholar 

  33. Popescu M, Otsuka A, Ioannides AA. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage. 2004;21(4):1622–38.

    Article  PubMed  Google Scholar 

  34. Griffiths TD. The neural processing of complex sounds. Ann N Y Acad Sci. 2001;930:133–42.

    Article  PubMed  CAS  Google Scholar 

  35. Griffiths TD, Rees A, Witton C, Cross PM, Shakir RA, Green GG. Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study. Brain. 1997;120(5):785–94.

    Article  PubMed  Google Scholar 

  36. Griffith TD, Flees A, Green GGR. Disorders of human complex sound processing. Neurocase. 1999;5(5):365–78.

    Article  Google Scholar 

  37. Patel AD. Music, language, and the brain. 1st ed. Oxford: Oxford University Press; 2007.

    Book  Google Scholar 

  38. Peretz I, Ayotte J, Zatorre RJ, Mehler J, Ahad P, Penhune VB, et al. Congenital amusia: a disorder of fine-grained pitch discrimination. Neuron. 2002;33(2):185–91.

    Article  PubMed  CAS  Google Scholar 

  39. Wan CY, Schlaug G. Music making as a tool for promoting brain plasticity across the life span. Neuroscientist. 2010;16(5):566–77.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zatorre RJ. Functional specialization of human auditory cortex for musical processing. Brain. 1998;121(Pt 10):1817–8.

    Article  PubMed  Google Scholar 

  41. Zatorre RJ, Belin P. Spectral and temporal processing in human auditory cortex. Cereb Cortex. 2001;11(10):946–53.

    Google Scholar 

  42. Hsieh L, Gandour J, Wong D, Hutchins GD. Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience. Brain Lang. 2001;76(3):227–52.

    Article  PubMed  CAS  Google Scholar 

  43. Gandour J, Wong D, Hsieh L, Weinzapfel B, Van Lancker D, Hutchins GD. A crosslinguistic PET study of tone perception. J Cogn Neurosci. 2000;12(1):207–22.

    Article  PubMed  CAS  Google Scholar 

  44. Gandour J, Wong D, Lowe M, Dzemidzic M, Satthamnuwong N, Tong Y, et al. A cross-linguistic FMRI study of spectral and temporal cues underlying phonological processing. J Cogn Neurosci. 2002;14(7):1076–87.

    Article  PubMed  Google Scholar 

  45. Rogalsky C, Rong F, Saberi K, Hickok G. Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging. J Neurosci. 2011;31(10):3843–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Schlaug G, Jäncke L, Huang Y, Steinmetz H. In vivo evidence of structural brain asymmetry in musicians. Science. 1995;267(5198):699–701.

    Article  PubMed  CAS  Google Scholar 

  47. Herdener M, Esposito F, di Salle F, Boller C, Hilti CC, Habermeyer B, et al. Musical training induces functional plasticity in human hippocampus. J Neurosci. 2010;30(4):1377–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Pantev C, Herholz SC. Plasticity of the human auditory cortex related to musical training. Neurosci Biobehav Rev. 2011;35:2140–54.

    Google Scholar 

  49. Brown S, Martinez MJ, Hodges DA, Fox PT, Parsons LM. The song system of the human brain. Brain Res Cogn Brain Res. 2004;20(3):363–75.

    Article  PubMed  Google Scholar 

  50. Koelsch S, Gunter TC, v Cramon DY, Zysset S, Lohmann G, Friederici AD. Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage. 2002;17(2):956–66.

    Google Scholar 

  51. Peretz I. Brain specialization for music. Neuroscientist. 2002;8(4):372–80.

    Article  PubMed  Google Scholar 

  52. Schönwiesner M, von Cramon DY, Rübsamen R. Is it tonotopy after all? Neuroimage. 2002;17(3):1144–61.

    Article  PubMed  Google Scholar 

  53. Schönwiesner M, Zatorre RJ. Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proc Natl Acad Sci U S A. 2009;106(34):14611–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lai G, Pantazatos SP, Schneider H, Hirsch J. Neural systems for speech and song in autism. Brain. 2012;135(Pt 3):961–75.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brown S, Martinez MJ, Parsons LM. Music and language side by side in the brain: a PET study of the generation of melodies and sentences. Eur J Neurosci. 2006;23(10):2791–803.

    Article  PubMed  Google Scholar 

  56. Koelsch S, Fritz T, V Cramon DY, Müller K, Friederici AD. Investigating emotion with music: an fMRI study. Hum Brain Mapp. 2006;27(3):239–50.

    Google Scholar 

  57. Schlaug G. The brain of musicians. A model for functional and structural adaptation. Ann N Y Acad Sci. 2001;930:281–99.

    Article  PubMed  CAS  Google Scholar 

  58. Angulo-Perkins A, Aubé W, Peretz I, Barrios F, Armony JL, Concha L. Music listening engages specific cortical regions within the temporal lobes: Differences between musicians and non-musicians. Cortex. 2014; http://dx.doi.org/10.1016/j.cortex.2014.07.013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Concha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Angulo-Perkins, A., Concha, L. (2014). Music Perception: Information Flow Within the Human Auditory Cortices. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_15

Download citation

Publish with us

Policies and ethics