Skip to main content

Getting the Timing Right: Experimental Protocols for Investigating Time with Functional Neuroimaging and Psychopharmacology

  • Chapter
  • First Online:
Book cover Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Functional Magnetic Resonance Imaging (fMRI) is an effective tool for identifying brain areas and networks implicated in human timing. But fMRI is not just a phrenological tool: by careful design, fMRI can be used to disentangle discrete components of a timing task and control for the underlying cognitive processes (e.g. sustained attention and WM updating) that are critical for estimating stimulus duration in the range of hundreds of milliseconds to seconds. Moreover, the use of parametric designs and correlational analyses allows us to better understand not just where, but also how, the brain processes temporal information. In addition, by combining fMRI with psychopharmacological manipulation, we can begin to uncover the complex relationship between cognition, neurochemistry and anatomy in the healthy human brain. This chapter provides an overview of some of the key findings in the functional imaging literature of both duration estimation and temporal prediction, and outlines techniques that can be used to allow timing-related activations to be interpreted more unambiguously. In our own studies, we have found that estimating event duration, whether that estimate is provided by a motor response or a perceptual discrimination, typically recruits basal ganglia, SMA and right inferior frontal cortex, and can be modulated by dopaminergic activity in these areas. By contrast, orienting attention to predictable moments in time in order to optimize behaviour, whether that is to speed motor responding or improve perceptual accuracy, recruits left inferior parietal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michon JA. The complete time experiencer. In: Michon JA, Jackson JLJ, editors. Time, mind and behavior. Berlin: Springer; 1985.

    Google Scholar 

  2. Zakay D, Block RA. The role of attention in time estimation processes. In: Pastor MA, editor. Time, internal clocks and movement. New York: Elsevier Sciences; 1996. p. 143–64.

    Google Scholar 

  3. Fortin C, Rousseau R. Interference from short-term memory processing on encoding and reproducing brief durations. Psychol Res. 1998;61:269–76.

    PubMed  CAS  Google Scholar 

  4. Lustig C, Matell MS, Meck WH. Not “just” a coincidence: frontal-striatal interactions in working memory and interval timing. Memory. 2005;13:441–8.

    PubMed  Google Scholar 

  5. Brown SW. Time and attention: review of the literature. In: Grondin S, editor. Time perception. Bingley: Emerald; 2008.

    Google Scholar 

  6. James W. The principles of psychology. New York: Henry Holt; 1890 (reprinted Bristol: Thoemmes Press, 1999).

    Google Scholar 

  7. Guyau J-M. La genèse de l’idée du temps. Paris: Félix Alcan; 1890.

    Google Scholar 

  8. Michon JA, Pouthas V, Jackson JL. Guyau and the idea of time. Amsterdam: Elsevier; 1989

    Google Scholar 

  9. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.

    PubMed  CAS  Google Scholar 

  10. Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18:137–44.

    PubMed  CAS  Google Scholar 

  11. Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta analysis. Neuroimage. 2010;49:1728–40.

    PubMed  Google Scholar 

  12. Jueptner M, Flerich L, Weiller C, Mueller SP, Diener HC. The human cerebellum and temporal information processing — results from a PET experiment. Neuroreport. 1996;7:2761–5.

    PubMed  CAS  Google Scholar 

  13. Maquet P, Lejeune H, Pouthas V, Bonnet M, Casini L, Macar F, Timsit-Berthier M, Vidal F, Ferrara A, Degueldre C, Quaglia L, Delfiore G, Luxen A, Woods R, Mazziotta JC, Comar D. Brain activation induced by estimation of duration: a PET study. Neuroimage. 1996;3:119–26.

    PubMed  CAS  Google Scholar 

  14. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17:5528–35.

    PubMed  CAS  Google Scholar 

  15. Schubotz RI, Friederichi AD, von Cramon DT. Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage. 2000;11:1–12.

    PubMed  CAS  Google Scholar 

  16. Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nat Neurosci. 2001;4:317–23.

    PubMed  CAS  Google Scholar 

  17. Nenadic I, Gaser C, Volz HP, Rammsayer T, Hager F, Sauer H. Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res. 2003;148(2):238–46.

    PubMed  Google Scholar 

  18. Harrington DL, Zimbelman JL, Hinton SC, Rao SM. Neural modulation of temporal encoding, maintenance, and decision processes. Cereb Cortex. 2010;20:1274–85.

    PubMed  PubMed Central  Google Scholar 

  19. Coull JT, Vidal F, Nazarian B, Macar F. Functional anatomy of the attentional modulation of time estimation. Science. 2004;303(5663):1506–8.

    PubMed  CAS  Google Scholar 

  20. Coull JT, Nazarian B, Vidal F. Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. J Cogn Neurosci. 2008;20:2185–97.

    PubMed  Google Scholar 

  21. Livesey AC, Wall MB, Smith AT. Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia. 2007;45(2):321–31.

    PubMed  Google Scholar 

  22. Morillon B, Kell CA, Giraud AL. Three stages and four neural systems in time estimation. J Neurosci. 2009;29(47):14803–11.

    PubMed  CAS  Google Scholar 

  23. Bueti D, Macaluso E. Physiological correlates of subjective time: evidence for the temporal accumulator hypothesis. Neuroimage. 2011;57:1251–63.

    PubMed  Google Scholar 

  24. Ferrandez AM, Hugueville L, Lehericy S, Poline JB, Marsault C, Pouthas V. Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage. 2003;19(4):1532–44.

    PubMed  CAS  Google Scholar 

  25. Lewis PA, Miall RC. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.

    PubMed  CAS  Google Scholar 

  26. Penhune VB, Zattore RJ, Evans AC. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci. 1998;10:752–65.

    PubMed  CAS  Google Scholar 

  27. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams S, Simmons A, Andrew C, Bullmore E. Prefrontal involvement in “temporal bridging” and timing movement. Neuropsychologia. 1998;36:1283–93.

    PubMed  CAS  Google Scholar 

  28. Jäncke L, Loose R, Lutz K, Specht K, Shah NJ. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res. 2000;10:51–66.

    Google Scholar 

  29. Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia. 2004;42:1301–12.

    PubMed  CAS  Google Scholar 

  30. Mayville JM, Jantzen KJ, Fuchs A, Steinberg FL, Kelso JAS. Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Hum Brain Mapp. 2002;17:214–29.

    PubMed  Google Scholar 

  31. Jantzen KJ, Steinberg FL, Kelso JAS. Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci U S A. 2004;101:6815–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Jantzen KJ, Steinberg FL, Kelso JAS. Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage. 2005;25:1031–42.

    PubMed  CAS  Google Scholar 

  33. Jahanshahi M, Jones CR, Dirnberger G, Frith CD. The substantia nigra pars compacta and temporal processing. J Neurosci. 2006;26:12266–73.

    PubMed  CAS  Google Scholar 

  34. Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20(2):204–14.

    PubMed  Google Scholar 

  35. Wittmann M, Simmons AN, Aron JL, Paulus MP. Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia. 2010;48:3110–20.

    PubMed  PubMed Central  Google Scholar 

  36. Lewis PA, Miall RC. Brain activity during non-automatic motor production of discrete multi-second intervals. Neuroreport. 2002;13:1731–5.

    PubMed  CAS  Google Scholar 

  37. Macar F, Anton J-L, Bonnet M, Vidal F. Timing functions of the supplementary motor area: an event-related fMRI study. Cogn Brain Res. 2004;21:206–15.

    Google Scholar 

  38. Coull JT, Davranche K, Nazarian B, Vidal F. Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia. 2013;51:309–19.

    PubMed  Google Scholar 

  39. Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol. 1999;81:3065–77.

    PubMed  CAS  Google Scholar 

  40. Cunnington R, Windischberger C, Deecke L, Moser E. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage. 2002;15(2):373–85.

    PubMed  CAS  Google Scholar 

  41. Pouthas V, George N, Poline JB, Pfeuty M, Vandemoorteele PF, Hugueville L, et al. Neural network involved in time perception: an fMRI study comparing long and short interval estimation. Hum Brain Mapp. 2005;25(4):433–41.

    PubMed  Google Scholar 

  42. Tregellas JR, Davalos DB, Rojas DC. Effect of task difficulty on the functional anatomy of temporal processing. Neuroimage. 2006;32(1):307–15.

    PubMed  Google Scholar 

  43. Lee KH, Egleston PN, Brown WH, Gregory AN, Barker AT, Woodruff PW. The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci. 2007;19:147–57.

    PubMed  Google Scholar 

  44. Wencil EB, Coslett HB, Aguirre GK, Chatterjee A. Carving the clock at its component joints: neural bases for interval timing. J Neurophysiol. 2010;104:160–8.

    PubMed  PubMed Central  Google Scholar 

  45. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Attentional modulation of neural processing of shape, color, and velocity in humans. Science. 1990;248:1556–9.

    PubMed  CAS  Google Scholar 

  46. Corbetta M, Miezin FM, Shulman GL, Petersen SE. A PET study of visuospatial attention. J Neurosci. 1993;13:1202–26.

    PubMed  CAS  Google Scholar 

  47. Matell MS, Meck WH. Neuropsychological mechanisms of interval timing behaviour. Bioessays. 2000;22(1):94–103.

    PubMed  CAS  Google Scholar 

  48. Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res. 2004;21(2):139–70.

    Google Scholar 

  49. Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, et al. Neural representation of interval encoding and decision making. Cogn Brain Res. 2004;21:193–205.

    Google Scholar 

  50. Buhusi CV, Meck WH. Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci. 2002;116:291–7.

    PubMed  CAS  Google Scholar 

  51. MacDonald CJ, Meck WH. Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology (Berl). 2005;182:232–44.

    CAS  Google Scholar 

  52. Matell MS, King GR, Meck WH. Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav Neurosci. 2004;118:150–6.

    PubMed  CAS  Google Scholar 

  53. Meck WH. Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol Anim Behav Process. 1983;9:171–201.

    PubMed  CAS  Google Scholar 

  54. Meck WH. Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav. 1986;25:1185–9.

    PubMed  CAS  Google Scholar 

  55. Meck WH. Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 2006;1109:93–107.

    PubMed  CAS  Google Scholar 

  56. Rammsayer T. Dopaminergic and serotoninergic influence on duration discrimination and vigilance. Pharmacopsychiatry. 1989;22 Suppl 1:39–43.

    PubMed  Google Scholar 

  57. Rammsayer T. Is there a common dopaminergic basis of time perception and reaction time? Neuropsychobiology. 1989;21(1):37–42.

    PubMed  CAS  Google Scholar 

  58. Rammsayer TH. On dopaminergic modulation of temporal information processing. Biol Psychol. 1993;36:209–22.

    PubMed  CAS  Google Scholar 

  59. Rammsayer TH. Are there dissociable roles of the mesostriatal and mesolimbocortical dopamine systems on temporal information processing in humans? Neuropsychobiology. 1997;35:36–45.

    PubMed  CAS  Google Scholar 

  60. Rammsayer TH. Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B. 1999;52:273–86.

    PubMed  CAS  Google Scholar 

  61. Rammsayer T. Effects of benzodiazepine-induced sedation on temporal processing. Human Psychopharmacol. 1992;7(5):311–8.

    CAS  Google Scholar 

  62. Rammsayer TH. Effects of pharmacologically induced changes in NMDA receptor activity on human timing and sensorimotor performance. Brain Res. 2006;1073–1074:407–16.

    PubMed  Google Scholar 

  63. Rammsayer TH, Hennig J, Haag A, Lange N. Effects of noradrenergic activity on temporal information processing in humans. Q J Exp Psychol B. 2001;54:247–58.

    PubMed  CAS  Google Scholar 

  64. Curran HV. Benzodiazepines, memory and mood: a review. Psychopharmacology (Berl). 1991;105(1):1–8.

    CAS  Google Scholar 

  65. Coull JT, Middleton HC, Robbins TW, Sahakian BJ. Clonidine and diazepam have differential effects on tests of attention and learning. Psychopharmacology (Berl). 1995;120:322–32.

    CAS  Google Scholar 

  66. Coull JT, Middleton HC, Robbins TW, Sahakian BJ. Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology (Berl). 1995;120:311–21.

    CAS  Google Scholar 

  67. Morgan CJ, Curran HV. Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology (Berl). 2006;188(4):408–24.

    CAS  Google Scholar 

  68. Wittmann M, Carter O, Hasler F, Cahn BR, Grimberg U, Spring P, et al. Effects of psilocybin on time perception and temporal control of behaviour in humans. J Psychopharmacol. 2007;21(1):50–64.

    PubMed  CAS  Google Scholar 

  69. Gibbon J, Church RM, Meck WH. Scalar timing in memory. Ann N Y Acad Sci. 1984;423:52–77.

    PubMed  CAS  Google Scholar 

  70. Treisman M. Temporal discrimination and the indifference interval: implications for a model of the “internal clock”. Psychol Monogr. 1963;77(13):1–31.

    PubMed  CAS  Google Scholar 

  71. Reutimann J, Yakovlev V, Fusi S, Senn W. Climbing neuronal activity as an event-based cortical representation of time. J Neurosci. 2004;24:3295–303.

    PubMed  CAS  Google Scholar 

  72. Gibbon J, Malapani C, Dale CL, Gallistel CR. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7:170–84.

    PubMed  CAS  Google Scholar 

  73. Buonomano DV, Bramen J, Khodadadifar M. Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model. Philos Trans R Soc Lond B Biol Sci. 2009;364:1865–73.

    PubMed  PubMed Central  Google Scholar 

  74. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    PubMed  Google Scholar 

  75. Coull JT, Morgan H, Cambridge VC, Moore JW, Giorlando F, Adapa R, Corlett PR, Fletcher PC. Ketamine perturbs perception of the flow of time in healthy volunteers. Psychopharmacology (Berl). 2011;218:543–56.

    CAS  Google Scholar 

  76. Pomarol-Clotet E, Honey GD, Murray GK, Corlett PR, Absalom AR, et al. Psychological effects of ketamine in healthy volunteers. Phenomenological study. Br J Psychiatry. 2006;189:173–9.

    PubMed  CAS  Google Scholar 

  77. Fletcher PC, Honey GD. Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits. Trends Cogn Sci. 2006;10:167–74.

    PubMed  Google Scholar 

  78. Corlett PR, Honey GD, Krystal JH, Fletcher PC. Glutamatergic model psychoses: prediction error, learning, and inference. Neuropsychopharmacology. 2011;36:294–315.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    PubMed  CAS  Google Scholar 

  80. Lhamon WT, Goldstone S. The time sense: estimation of one second durations by schizophrenic patients. AMA Arch Neurol Psychiatry. 1956;76:625–9.

    PubMed  Google Scholar 

  81. Tysk L. Time estimation by healthy subjects and schizophrenic patients: a methodological study. Percept Mot Skills. 1983;56:983–8.

    PubMed  CAS  Google Scholar 

  82. Elvevåg B, McCormack T, Gilbert A, Brown GD, Weinberger DR, Goldberg TE. Duration judgements in patients with schizophrenia. Psychol Med. 2003;33:1249–61.

    PubMed  Google Scholar 

  83. Davalos DB, Kisley MA, Ross RG. Effects of interval duration on temporal processing in schizophrenia. Brain Cogn. 2003;52:295–301.

    PubMed  Google Scholar 

  84. Carroll CA, Boggs J, O’Donnell BF, Shekhar A, Hetrick WP. Temporal processing dysfunction in schizophrenia. Brain Cogn. 2008;67:150–61.

    PubMed  PubMed Central  Google Scholar 

  85. Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP. Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain Cogn. 2009;71:345–53.

    PubMed  PubMed Central  Google Scholar 

  86. Lee KH, Bhaker RS, Mysore A, Parks RW, Birkett PB, Woodruff PW. Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiatry Res. 2009;166:174–83.

    PubMed  Google Scholar 

  87. Eddington AS. The nature of the physical world. Cambridge: Cambridge University Press; 1928.

    Google Scholar 

  88. Goldstone S, Nurnberg HG, Lhamon WT. Effects of trifluoperazine, chlorpromazine, and haloperidol upon temporal information processing by schizophrenic patients. Psychopharmacology (Berl). 1979;65(2):119–24.

    CAS  Google Scholar 

  89. Maricq AV, Church RM. The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology (Berl). 1983;79:10–5.

    CAS  Google Scholar 

  90. Coull JT, Hwang HJ, Leyton M, Dagher A. Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area. J Neurosci. 2012;32:16704–15.

    PubMed  CAS  Google Scholar 

  91. Coull JT, Thiele C. Functional imaging of cognitive psychopharmacology. In: Frackowiak RSJ et al., editors. Human brain function. 2nd ed. New York: Academic; 2004.

    Google Scholar 

  92. Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. Am J Psychiatry. 2003;160:1887–9.

    PubMed  Google Scholar 

  93. Leyton M, Dagher A, Boileau I, Casey K, Baker GB, Diksic M, Gunn R, Young SN, Benkelfat C. Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: A PET/[11C]raclopride study in healthy men. Neuropsychopharmacology. 2004;29:427–32.

    PubMed  CAS  Google Scholar 

  94. Postuma RB, Dagher A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex. 2006;16:1508–21.

    PubMed  Google Scholar 

  95. Lehericy S, Ducros M, Krainik A, Francois C, Van de Moortele P, Ugurbil K, Kim D. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex. 2004;14:1302–9.

    PubMed  Google Scholar 

  96. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    PubMed  CAS  Google Scholar 

  97. Harrington DL, Castillo GN, Greenberg PA, Song DD, Lessig S, Lee RR, Rao SM. Neurobehavioral mechanisms of temporal processing deficits in Parkinson’s disease. PLoS One. 2011;6(2):e17461.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Jahanshahi M, Jones CR, Zijlmans J, Katzenschlager R, Lee L, Quinn N, Frith CD, Lees AJ. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain. 2010;133:727–45.

    PubMed  Google Scholar 

  99. Le Masurier M, Cowen PJ, Sharp T. Fos immunocytochemical studies on the neuroanatomical sites of action of acute tyrosine depletion in the rat brain. Psychopharmacology (Berl). 2004;171:435–40.

    Google Scholar 

  100. Michon JA. Implicit and explicit representations of time. In: Block RA, editor. Cognitive models of psychological time. Hillsdale: Lawrence Erlbaum Associates; 1980. p. 37–58.

    Google Scholar 

  101. Grondin S. From physical time to the first and second moments of psychological time. Psychol Bull. 2001;127:22–44.

    PubMed  CAS  Google Scholar 

  102. Zelaznik HN, Spencer RMC, Ivry RB. Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. J Exp Psychol Hum Percept Perform. 2002;28:575–88.

    PubMed  Google Scholar 

  103. Jones CR, Malone TJ, Dirnberger J, Edwards M, Jahanshahi M. Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn. 2008;68:30–41.

    PubMed  Google Scholar 

  104. Merchant H, Zarco W, Bartolo R, Prado L. The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLoS One. 2008;3(9):e3169.

    PubMed  PubMed Central  Google Scholar 

  105. Grondin S. Timing and time perception: a review of recent behavioural and neuroscience findings and theoretical directions. Atten Percept Psychophys. 2010;72:561–82.

    PubMed  Google Scholar 

  106. Jones MR. The patterning of time and its effects on perceiving. Ann N Y Acad Sci. 1984;423:158–67.

    PubMed  CAS  Google Scholar 

  107. Jones MR. Attending to sound patterns and the role of entrainment. In: Nobre AC, Coull JT, editors. Attention and time. Oxford: Oxford University Press; 2010. p. 137–330.

    Google Scholar 

  108. Woodrow H. The measurement of attention. Psychol Monogr. 1914;17.

    Google Scholar 

  109. Posner MI, Snyder C, Davidson BJ. Attention and the detection of signals. J Exp Psychol. 1980;109:160–74.

    PubMed  CAS  Google Scholar 

  110. Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18:7426–35.

    PubMed  CAS  Google Scholar 

  111. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci. 2000;3(3):292–7.

    PubMed  CAS  Google Scholar 

  112. Nobre AC. The attentive homunculus: now you see it, now you don’t. Neurosci Biobehav Rev. 2001;25(6):477–96.

    PubMed  CAS  Google Scholar 

  113. O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.

    PubMed  Google Scholar 

  114. Rushworth MFS, Nixon PD, Renowden S, Wade DT, Passingham RE. The left parietal cortex and motor attention. Neuropsychologia. 1997;35:1261–73.

    PubMed  CAS  Google Scholar 

  115. Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT. The left parietal and premotor cortices: motor attention and selection. Neuroimage. 2003;20(S1):S89–100.

    PubMed  Google Scholar 

  116. Cotti J, Rohenkohl G, Stokes M, Nobre AC, Coull JT. Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. Neuroimage. 2011;54:1221–30.

    PubMed  PubMed Central  Google Scholar 

  117. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci. 2003;23:4689–99.

    PubMed  CAS  Google Scholar 

  118. Eimer M, Forster B, Velzen JV, Prabhu G. Covert manual response preparation triggers attentional shifts: ERP evidence for the premotor theory of attention. Neuropsychologia. 2005;43:957–66.

    PubMed  PubMed Central  Google Scholar 

  119. Griffin IC, Miniussi C, Nobre AC. Orienting attention in time. Front Biosci. 2001;6:D660–71.

    PubMed  CAS  Google Scholar 

  120. Correa Á, Lupiáñez J, Milliken B, Tudela P. Endogenous temporal orienting of attention in detection and discrimination tasks. Percept Psychophys. 2004;66(2):264–78.

    PubMed  Google Scholar 

  121. Correa Á, Lupiáñez J, Tudela P. Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychon Bull Rev. 2005;12(2):328–34.

    PubMed  Google Scholar 

  122. Martens S, Johnson A. Timing attention: cuing target onset interval attenuates the attentional blink. Mem Cognit. 2005;33(2):234–40.

    PubMed  Google Scholar 

  123. Davranche K, Nazarian B, Vidal F, Coull JT. Orienting attention in time activates left intraparietal sulcus for perceptual and motor task goals. J Cogn Neurosci. 2011;23:3318–30.

    PubMed  Google Scholar 

  124. Wiener M, Turkeltaub P, Coslett HB. Implicit timing activates the left inferior parietal cortex. Neuropsychologia. 2010;48:3967–71.

    PubMed  PubMed Central  Google Scholar 

  125. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.

    Google Scholar 

  126. Kastner S, Ungerleider LG. The neural basis of biased competition in human visual cortex. Neuropsychologia. 2001;39(12):1263–76.

    PubMed  CAS  Google Scholar 

  127. Bolger D, Coull JT, Schon D. Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation. J Cogn Neurosci. 2014;26:593–605.

    PubMed  Google Scholar 

  128. Rohenkohl G, Coull JT, Nobre AC. Behavioural dissociation between exogenous and endogenous temporal orienting of attention. PLoS One. 2011;6:e14620.

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Bengtsson SL, Ehrsson HH, Forssberg H, Ullen F. Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur J Neurosci. 2005;22(12):3255–65.

    PubMed  Google Scholar 

  130. Chen JL, Zatorre RJ, Penhune VB. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage. 2006;32:1771–81.

    PubMed  Google Scholar 

  131. Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci. 2007;19:893–906.

    PubMed  Google Scholar 

  132. Grahn JA, McAuley JD. Neural bases of individual difference in beat perception. Neuroimage. 2009;47:1894–903.

    PubMed  Google Scholar 

  133. Marchant JL, Driver J. Visual and audiovisual effects of isochronous timing on visual perception and brain activity. Cereb Cortex. 2013;23:1290–8.

    PubMed  PubMed Central  Google Scholar 

  134. Goldberg G. Supplementary motor area structure and function: review and hypotheses. Behav Brain Sci. 1985;8:567–88.

    Google Scholar 

  135. Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RSJ. Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res. 1991;84:393–402.

    PubMed  CAS  Google Scholar 

  136. Frith CD, Friston KJ, Liddle PF, Frackowiak RSJ. Willed action and the prefrontal cortex in man: a study with PET. Proc Biol Soc. 1991;244:241–6.

    CAS  Google Scholar 

  137. Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement related potentials in normal and Parkinson’s disease subjects. Brain. 1995;118:913–33.

    PubMed  Google Scholar 

  138. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Self initiated versus externally triggered movements: II. The effect of movement predictability on regional cerebral blood flow. Brain. 2000;123:1216–28.

    PubMed  Google Scholar 

  139. Krieghoff V, Brass M, Prinz W, Waszak F. Dissociating what and when of intentional actions. Front Hum Neurosci. 2009;3:3.

    PubMed  PubMed Central  Google Scholar 

  140. Lau HC, Rogers RD, Haggard P, Passingham RE. Attention to intention. Science. 2004;303:1208–10.

    PubMed  CAS  Google Scholar 

  141. Rushworth MF, Ellison A, Walsh V. Complementary localization and lateralization of orienting and motor attention. Nat Neurosci. 2001;4(6):656–61.

    PubMed  CAS  Google Scholar 

  142. Hesse MD, Thiel CM, Stephan KE, Fink GR. The left parietal cortex and motor intention: an event-related functional magnetic resonance imaging study. Neuroscience. 2006;140(4):1209–21.

    PubMed  CAS  Google Scholar 

  143. Wenke D, Waszak F, Haggard P. Action selection and action awareness. Psychol Res. 2009;73:602–12.

    PubMed  PubMed Central  Google Scholar 

  144. Brass M, Haggard P. The what, when, whether model of intentional action. Neuroscientist. 2008;14:319–25.

    PubMed  Google Scholar 

  145. Fraisse P. The adaptation of the child to time. In: Friedman WJ, editor. The developmental psychology of time. New York: Academic; 1982. p. 113–40.

    Google Scholar 

  146. Levin I. The development of the concept of time in children: an integrative model. In: Macar F, Pouthas V, Friedman WJ, editors. Time, action and cognition: towards bridging the gap. Dordrecht: Kluwer Academic; 1992. p. 13–33.

    Google Scholar 

  147. Walsh V. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci. 2003;7:483–8.

    PubMed  Google Scholar 

  148. Craig AD. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci. 2009;364:1933–42.

    PubMed  PubMed Central  Google Scholar 

  149. Wittmann M. The inner experience of time. Philos Trans R Soc Lond B Biol Sci. 2009;364:1955–67.

    PubMed  PubMed Central  Google Scholar 

  150. Chambon M, Droit-Volet S, Niedenthal PM. The effect of embodying the elderly on time perception. J Exp Soc Psychol. 2008;44:672–8.

    Google Scholar 

  151. Nather FC, Bueno JL, Bigand E, Droit-Volet S. Time changes with the embodiment of another’s body posture. PLoS One. 2011;6(5):e19818.

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Fraisse P. Etude comparée de la perception et de l’estimation de la durée chez les enfants et chez les adultes. Enfance. 1948;1:199–211.

    Google Scholar 

  153. Droit-Volet S, Rattat A-C. Are time and action dissociated in young children’s time estimation? Cogn Dev. 1999;14:573–95.

    Google Scholar 

  154. Droit-Volet S. Time estimation in young children: an initial force rule governing time production. J Exp Child Psychol. 1998;68:236–49.

    PubMed  CAS  Google Scholar 

  155. Rizzolatti G, Riggio L, Dascola I, Umiltá C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia. 1987;25:31–40.

    PubMed  CAS  Google Scholar 

  156. Gallese V, Fodiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. Brain. 1996;119:593–609.

    PubMed  Google Scholar 

  157. Hommel B, Müsseler J, Aschersleben G, Prinz W. The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci. 2001;24:849–78.

    PubMed  CAS  Google Scholar 

  158. Schubotz RI. Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci. 2007;11:211–8.

    PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank my collaborators for many stimulating conversations about time over the years, particularly Kia Nobre in Oxford and Franck Vidal in Marseille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer T. Coull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coull, J.T. (2014). Getting the Timing Right: Experimental Protocols for Investigating Time with Functional Neuroimaging and Psychopharmacology. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_13

Download citation

Publish with us

Policies and ethics