Skip to main content

Probing Interval Timing with Scalp-Recorded Electroencephalography (EEG)

  • Chapter
  • First Online:
Book cover Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Humans, and other animals, are able to easily learn the durations of events and the temporal relationships among them in spite of the absence of a dedicated sensory organ for time. This chapter summarizes the investigation of timing and time perception using scalp-recorded electroencephalography (EEG), a non-invasive technique that measures brain electrical potentials on a millisecond time scale. Over the past several decades, much has been learned about interval timing through the examination of the characteristic features of averaged EEG signals (i.e., event-related potentials, ERPs) elicited in timing paradigms. For example, the mismatch negativity (MMN) and omission potential (OP) have been used to study implicit and explicit timing, respectively, the P300 has been used to investigate temporal memory updating, and the contingent negative variation (CNV) has been used as an index of temporal decision making. In sum, EEG measures provide biomarkers of temporal processing that allow researchers to probe the cognitive and neural substrates underlying time perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allman MJ, Meck WH. Pathophysiological distortions in time perception and timed performance. Brain. 2012;135(3):656–77.

    PubMed  PubMed Central  Google Scholar 

  2. Gallistel CR, Gibbon J. Time, rate, and conditioning. Psychol Rev. 2000;107(2):289–344.

    PubMed  CAS  Google Scholar 

  3. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36(1):313–36.

    PubMed  CAS  Google Scholar 

  4. Correa Á, Lupiáñez J, Madrid E, Tudela P. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials. Brain Res. 2006;1076(1):116–28.

    PubMed  CAS  Google Scholar 

  5. Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44.

    PubMed  CAS  Google Scholar 

  6. Cravo AM, Rohenkohl G, Wyart V, Nobre AC. Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J Neurosci. 2013;33(9):4002–10.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Rohenkohl G, Cravo AM, Wyart V, Nobre AC. Temporal expectation improves the quality of sensory information. J Neurosci. 2012;32(24):8424–8.

    PubMed  CAS  Google Scholar 

  8. Henry M, Herrmann B. Low-frequency neural oscillations support dynamic attending in temporal context. Timing Time Percept. 2014;2(1):62–86.

    Google Scholar 

  9. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. Oxford: Oxford University Press; 2006.

    Google Scholar 

  10. Luck SJ. An introduction to the event-related potential technique. Cambridge, MA: The MIT Press; 2005.

    Google Scholar 

  11. Grova C, Daunizeau J, Lina J-M, Bénar CG, Benali H, Gotman J. Evaluation of EEG localization methods using realistic simulations of interictal spikes. Neuroimage. 2006;29(3):734–53.

    PubMed  CAS  Google Scholar 

  12. Dawson GD. A summation technique for detecting small signals in a large irregular background. J Physiol. 1951;115(1):2p–3.

    PubMed  CAS  Google Scholar 

  13. Dawson GD. A summation technique for the detection of small evoked potentials. Electroencephalogr Clin Neurophysiol. 1954;6(1):65–84.

    PubMed  CAS  Google Scholar 

  14. Picton TW. Auditory event-related potentials. In: Nadel L, editor. Encyclopedia of cognitive sciences. Wiley; 2006.

    Google Scholar 

  15. Ahmadi M, Quian Quiroga R. Automatic denoising of single-trial evoked potentials. Neuroimage. 2013;66:672–80.

    PubMed  Google Scholar 

  16. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

    PubMed  CAS  Google Scholar 

  17. Handy TC. Event-related potentials: a methods Handbook. Cambridge: MIT Press; 2005.

    Google Scholar 

  18. Handy TC. Brain signal analysis: advances in neuroelectric and neuromagnetic methods. Cambridge: MIT Press; 2009.

    Google Scholar 

  19. Ullsperger M, Debener S. Simultaneous EEG and fMRI. Oxford: Oxford University Press; 2010.

    Google Scholar 

  20. Tse C-Y, Penney TB. Preattentive timing of empty intervals is from marker offset to onset. Psychophysiology. 2006;43(2):172–9.

    PubMed  Google Scholar 

  21. Näätänen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci. 1990;13(2):201–33.

    Google Scholar 

  22. Piras F, Coull JT. Implicit, predictive timing draws upon the same scalar representation of time as explicit timing. PLoS One. 2011;6(3):e18203.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Pakarinen S, Huotilainen M, Näätänen R. The mismatch negativity (MMN) with no standard stimulus. Clin Neurophysiol. 2010;121(7):1043–50.

    PubMed  Google Scholar 

  24. Kaukoranta E, Sams M, Hari R, Hämäläinen M, Näätänen R. Reactions of human auditory cortex to a change in tone duration. Hear Res. 1989;41(1):15–21.

    PubMed  CAS  Google Scholar 

  25. Näätänen R, Paavilainen P, Reinikainen K. Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man? Neurosci Lett. 1989;107(1–3):347–52.

    PubMed  Google Scholar 

  26. Näätänen R, Syssoeva O, Takegata R. Automatic time perception in the human brain for intervals ranging from milliseconds to seconds. Psychophysiology. 2004;41(4):660–3.

    PubMed  Google Scholar 

  27. Brannon EM, Roussel LW, Meck WH, Woldorff MG. Timing in the baby brain. Cogn Brain Res. 2004;21(2):227–33.

    Google Scholar 

  28. Brannon EM, Libertus ME, Meck WH, Woldorff MG. Electrophysiological measures of time processing in infant and adult brains: Weber’s law holds. J Cogn Neurosci. 2008;20(2):193–203.

    PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Huang X, Luo Y, Peng C, Liu C. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task. Brain Res. 2010;1325:100–11.

    PubMed  CAS  Google Scholar 

  30. Besson M, Faita F, Czternasty C, Kutas M. What’s in a pause: event-related potential analysis of temporal disruptions in written and spoken sentences. Biol Psychol. 1997;46(1):3–23.

    PubMed  CAS  Google Scholar 

  31. Besson M, Faïta F, Requin J. Brain waves associated with musical incongruities differ for musicians and non-musicians. Neurosci Lett. 1994;168(1–2):101–5.

    PubMed  CAS  Google Scholar 

  32. Bullock TH, Karamürsel S, Achimowicz JZ, McClune MC, Başar-Eroglu C. Dynamic properties of human visual evoked and omitted stimulus potentials. Electroencephalogr Clin Neurophysiol. 1994;91(1):42–53.

    PubMed  CAS  Google Scholar 

  33. Fujioka T, Trainor LJ, Large EW, Ross B. Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci. 2012;32(5):1791–802.

    PubMed  CAS  Google Scholar 

  34. Jongsma MLA, Eichele T, Quiroga RQ, Jenks KM, Desain P, Honing H, et al. Expectancy effects on omission evoked potentials in musicians and non-musicians. Psychophysiology. 2005;42(2):191–201.

    PubMed  Google Scholar 

  35. Macar F, Vidal F. Event-related potentials as indices of time processing: a review. J Psychophysiol. 2004;18(2–3):89–104.

    Google Scholar 

  36. Motz BA, Erickson MA, Hetrick WP. To the beat of your own drum: cortical regularization of non-integer ratio rhythms toward metrical patterns. Brain Cogn. 2013;81(3):329–36.

    PubMed  PubMed Central  Google Scholar 

  37. Penney TB. Electrophysiological correlates of interval timing in the stop-reaction-time task. Brain Res Cogn Brain Res. 2004;21(2):234–49.

    PubMed  Google Scholar 

  38. Takasaka Y. Expectancy-related cerebral potentials associated with voluntary time estimation and omitted stimulus. Psychiatry Clin Neurosci. 1985;39(2):167–72.

    CAS  Google Scholar 

  39. Karamürsel S, Bullock TH. Human auditory fast and slow omitted stimulus potentials and steady-state responses. Int J Neurosci. 2000;100(1–4):1–20.

    PubMed  Google Scholar 

  40. Busse L, Woldorff MG. The ERP omitted stimulus response to “no-stim” events and its implications for fast-rate event-related fMRI designs. Neuroimage. 2003;18(4):856–64.

    PubMed  Google Scholar 

  41. Hernández OH, Vogel-Sprott M. OSP parameters and the cognitive component of reaction time to a missing stimulus: linking brain and behavior. Brain Cogn. 2009;71(2):141–6.

    PubMed  Google Scholar 

  42. Penney TB. Modality differences in interval timing: attention, clock speed, and memory. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC; 2003. p. 209–34.

    Google Scholar 

  43. Rousseau L, Rousseau R. Stop—reaction time and the internal clock. Percept Psychophys. 1996;58(3):434–48.

    PubMed  CAS  Google Scholar 

  44. Gibbon J, Church RM, Meck WH. Scalar timing in memory. Ann N Y Acad Sci. 1984;423(1):52–77.

    PubMed  CAS  Google Scholar 

  45. Jongsma MLA, Quiroga RQ, van Rijn CM. Rhythmic training decreases latency-jitter of omission evoked potentials (OEPs) in humans. Neurosci Lett. 2004;355(3):189–92.

    PubMed  CAS  Google Scholar 

  46. Quiroga RQ, Garcia H. Single-trial event-related potentials with wavelet denoising. Clin Neurophysiol. 2003;114(2):376–90.

    Google Scholar 

  47. Rüsseler J, Altenmüller E, Nager W, Kohlmetz C, Münte TF. Event-related brain potentials to sound omissions differ in musicians and non-musicians. Neurosci Lett. 2001;308(1):33–6.

    PubMed  Google Scholar 

  48. Deecke L, Lang W. P300 as the resolution of negative cortical DC shifts. Behav Brain Sci. 1988;11(3):379–81.

    Google Scholar 

  49. McCullagh J, Weihing J, Musiek F. Comparisons of P300s from standard oddball and omitted paradigms: implications to exogenous/endogenous contributions. J Am Acad Audiol. 2009;20(3):187–95. quiz 219.

    PubMed  Google Scholar 

  50. Ruchkin DS, Sutton S, Tueting P. Emitted and evoked P300 potentials and variation in stimulus probability. Psychophysiology. 1975;12(5):591–5.

    PubMed  CAS  Google Scholar 

  51. Nieuwenhuis S, Aston-Jones G, Cohen JD. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull. 2005;131(4):510–32.

    PubMed  Google Scholar 

  52. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48.

    PubMed  PubMed Central  Google Scholar 

  53. Donchin E, Coles MG. Is the P300 component a manifestation of context updating? Behav Brain Sci. 1988;11(3):357–427.

    Google Scholar 

  54. Verleger R. Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci. 1988;11(3):343–56.

    Google Scholar 

  55. Stadler W, Klimesch W, Pouthas V, Ragot R. Differential effects of the stimulus sequence on CNV and P300. Brain Res. 2006;1123(1):157–67.

    PubMed  CAS  Google Scholar 

  56. Lange K, Rösler F, Röder B. Early processing stages are modulated when auditory stimuli are presented at an attended moment in time: an event-related potential study. Psychophysiology. 2003;40(5):806–17.

    PubMed  Google Scholar 

  57. Kok A. The effect of warning stimulus novelty on the P300 and components of the contingent negative variation. Biol Psychol. 1978;6(3):219–33.

    PubMed  CAS  Google Scholar 

  58. Le Dantec C, Gontier E, Paul I, Charvin H, Bernard C, Lalonde R, et al. ERPs associated with visual duration discriminations in prefrontal and parietal cortex. Acta Psychol (Amst). 2007;125(1):85–98.

    Google Scholar 

  59. Birbaumer N, Elbert T. P3: byproduct of a byproduct. Behav Brain Sci. 1988;11(3):375–7.

    Google Scholar 

  60. Gibbons H, Brandler S, Rammsayer TH. Dissociating aspects of temporal and frequency processing: a functional ERP study in humans. Cortex. 2003;39(4–5):947–65.

    PubMed  Google Scholar 

  61. Gontier E, Paul I, Le Dantec C, Pouthas V, Jean-Marie G, Bernard C, et al. ERPs in anterior and posterior regions associated with duration and size discriminations. Neuropsychology. 2009;23(5):668–78.

    PubMed  Google Scholar 

  62. Miniussi C, Wilding EL, Coull JT, Nobre AC. Orienting attention in time. Modulation of brain potentials. Br J Neurol. 1999;122(8):1507–18.

    Google Scholar 

  63. Large EW, Jones MR. The dynamics of attending: how people track time-varying events. Psychol Rev. 1999;106(1):119–59.

    Google Scholar 

  64. Schirmer A, Simpson E, Escoffier N. Listen up! Processing of intensity change differs for vocal and nonvocal sounds. Brain Res. 2007;1176:103–12.

    PubMed  CAS  Google Scholar 

  65. Schmidt-Kassow M, Schubotz RI, Kotz SA. Attention and entrainment: P3b varies as a function of temporal predictability. Neuroreport. 2009;20(1):31–6.

    PubMed  Google Scholar 

  66. Gibbons H, Rammsayer TH. Electrophysiological correlates of temporal generalization: evidence for a two-process model of time perception. Cogn Brain Res. 2005;25(1):195–209.

    Google Scholar 

  67. Gibbons H, Stahl J. ERP predictors of individual performance on a prospective temporal reproduction task. Psychol Res. 2008;72(3):311–20.

    PubMed  Google Scholar 

  68. Gontier E, Le Dantec C, Leleu A, Paul I, Charvin H, Bernard C, et al. Frontal and parietal ERPs associated with duration discriminations with or without task interference. Brain Res. 2007;1170:79–89.

    PubMed  CAS  Google Scholar 

  69. Gontier E, Le Dantec C, Paul I, Bernard C, Lalonde R, Rebaï M. A prefrontal ERP involved in decision making during visual duration and size discrimination tasks. Int J Neurosci. 2008;118(1):149–62.

    PubMed  Google Scholar 

  70. Paul I, Le Dantec C, Bernard C, Lalonde R, Rebaï M. Event-related potentials in the frontal lobe during performance of a visual duration discrimination task. J Clin Neurophysiol. 2003;20(5):351–60.

    PubMed  Google Scholar 

  71. Paul I, Wearden J, Bannier D, Gontier E, Le Dantec C, Rebaï M. Making decisions about time: event-related potentials and judgements about the equality of durations. Biol Psychol. 2011;88(1):94–103.

    PubMed  Google Scholar 

  72. Wearden JH. Decision processes in models of timing. Acta Neurobiol Exp. 2004;64(3):303–17.

    Google Scholar 

  73. Ahrens MB, Sahani M. Observers exploit stochastic models of sensory change to help judge the passage of time. Curr Biol. 2011;21(3):200–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Gu B-M, Jurkowski AJ, Malapani C, Lake JI, Meck WH. Bayesian models of interval timing and the migration of temporal memories as a function of Parkinson’s Disease and dopamine-related error processing. In: Vatakis A, Allman MJ, editors. Time distortions in mind: temporal processing in clinical populations. Boston, MA: Brill Academic Publishers; 2013.

    Google Scholar 

  75. Jazayeri M, Shadlen MN. Temporal context calibrates interval timing. Nat Neurosci. 2010;13(8):1020–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature. 1964;203(4943):380–4.

    PubMed  CAS  Google Scholar 

  77. Ng KK, Tobin S, Penney TB. Temporal accumulation and decision processes in the duration bisection task revealed by contingent negative variation. Front Integr Neurosci. 2011;5:77. 10.3389/fnint.2011.00077. eCollection 2011.

    PubMed  PubMed Central  Google Scholar 

  78. Tecce JJ. Contingent negative variation (CNV) and psychological processes in man. Psychol Bull. 1972;77(2):73–108.

    PubMed  CAS  Google Scholar 

  79. Birbaumer N, Elbert T, Canavan AG, Rockstroh B. Slow potentials of the cerebral cortex and behavior. Physiol Rev. 1990;70(1):1–41.

    PubMed  CAS  Google Scholar 

  80. Casini L, Vidal F. The SMAs: neural substrate of the temporal accumulator? Front Integr Neurosci. 2011;5:35. 10.3389/fnint.2011.00035. eCollection 2011.

    PubMed  PubMed Central  Google Scholar 

  81. Kononowicz TW, van Rijn H. Slow potentials in time estimation: the role of temporal accumulation and habituation. Front Integr Neurosci. 2011;5:48. 10.3389/fnint.2011.00048. eCollection 2011.

    PubMed  PubMed Central  Google Scholar 

  82. Van Rijn H, Kononowicz TW, Meck WH, Ng KK, Penney TB. Contingent negative variation and its relation to time estimation: a theoretical evaluation. Front Integr Neurosci. 2011;5:91. 10.3389/fnint.2011.00091. eCollection 2011.

    PubMed  PubMed Central  Google Scholar 

  83. McCallum WC. Brain slow potential changes and motor response in a vigilance situation. In: McCallum WC, Knott JR, editors. Responsive brain. Bristol: John Wright and Sons Ltd; 1976. p. 46–50.

    Google Scholar 

  84. Campbell K, Herzig A, Jashmidi P. The extent of active processing of a long-duration stimulus modulates the scalp-recorded sustained potential. Brain Cogn. 2009;69(1):170–5.

    PubMed  Google Scholar 

  85. Pfeuty M, Ragot R, Pouthas V. Brain activity during interval timing depends on sensory structure. Brain Res. 2008;1204:112–7.

    PubMed  CAS  Google Scholar 

  86. Macar F, Vitton N. An early resolution of contingent negative variation (CNV) in time discrimination. Electroencephalogr Clin Neurophysiol. 1982;54(4):426–35.

    PubMed  CAS  Google Scholar 

  87. Masaki H, Sommer W, Takasawa N, Yamazaki K. Neural mechanisms of timing control in a coincident timing task. Exp Brain Res. 2012;218(2):215–26.

    PubMed  Google Scholar 

  88. Brunia CHM. Slow potentials in anticipatory behavior. J Psychophysiol. 2004;18(2–3):59–60.

    Google Scholar 

  89. Van Boxtel GJM, Böcker KBE. Cortical measures of anticipation. J Psychophysiol. 2004;18(2–3):61–76.

    Google Scholar 

  90. Mento G, Tarantino V, Sarlo M, Bisiacchi PS. Automatic temporal expectancy: a high-density event-related potential study. PLoS One. 2013;8(5):e62896.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Pfeuty M, Ragot R, Pouthas V. Processes involved in tempo perception: a CNV analysis. Psychophysiology. 2003;40(1):69–76.

    PubMed  Google Scholar 

  92. Praamstra P, Kourtis D, Kwok HF, Oostenveld R. Neurophysiology of implicit timing in serial choice reaction-time performance. J Neurosci. 2006;26(20):5448–55.

    PubMed  CAS  Google Scholar 

  93. Higuchi S, Watanuki S, Yasukouchi A. Effects of reduction in arousal level caused by long-lasting task on CNV. Appl Human Sci. 1997;16(1):29–34.

    PubMed  CAS  Google Scholar 

  94. Rohrbaugh JW, Syndulko K, Lindsley DB. Cortical slow negative waves following non-paired stimuli: effects of task factors. Electroencephalogr Clin Neurophysiol. 1978;45(5):551–67.

    PubMed  CAS  Google Scholar 

  95. Rohrbaugh JW, Syndulko K, Lindsley DB. Cortical slow negative waves following non-paired stimuli: effects of modality, intensity and rate of stimulation. Electroencephalogr Clin Neurophysiol. 1979;46(4):416–27.

    PubMed  CAS  Google Scholar 

  96. Scheibe C, Schubert R, Sommer W, Heekeren HR. Electrophysiological evidence for the effect of prior probability on response preparation. Psychophysiology. 2009;46(4):758–70.

    PubMed  Google Scholar 

  97. Scheibe C, Ullsperger M, Sommer W, Heekeren HR. Effects of parametrical and trial-to-trial variation in prior probability processing revealed by simultaneous electroencephalogram/functional magnetic resonance imaging. J Neurosci. 2010;30(49):16709–17.

    PubMed  CAS  Google Scholar 

  98. Trillenberg P, Verleger R, Wascher E, Wauschkuhn B, Wessel K. CNV and temporal uncertainty with “ageing” and “non-ageing” S1–S2 intervals. Clin Neurophysiol. 2000;111(7):1216–26.

    PubMed  CAS  Google Scholar 

  99. Bender S, Resch F, Weisbrod M, Oelkers-Ax R. Specific task anticipation versus unspecific orienting reaction during early contingent negative variation. Clin Neurophysiol. 2004;115(8):1836–45.

    PubMed  Google Scholar 

  100. Loveless NE. The effect of warning interval on signal detection and event-related slow potentials of the brain. Percept Psychophys. 1975;17(6):565–70.

    Google Scholar 

  101. Simons RF, Huffman JE, Macmillan III FW. The component structure of event-related slow potentials: task, ISI, and warning stimulus effects on the “E” wave. Biol Psychol. 1983;17(2–3):193–219.

    PubMed  CAS  Google Scholar 

  102. Damen EJP, Brunia CHM. Changes in heart rate and slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiology. 1987;24(6):700–13.

    PubMed  CAS  Google Scholar 

  103. Van Boxtel GJM, Brunia CHM. Motor and non-motor aspects of slow brain potentials. Biol Psychol. 1994;38(1):37–51.

    PubMed  Google Scholar 

  104. Flores AB, Digiacomo MR, Meneres S, Trigo E, Gómez CM. Development of preparatory activity indexed by the contingent negative variation in children. Brain Cogn. 2009;71(2):129–40.

    PubMed  Google Scholar 

  105. Loveless NE, Sanford AJ. Slow potential correlates of preparatory set. Biol Psychol. 1974;1(4):303–14.

    PubMed  CAS  Google Scholar 

  106. Rohrbaugh JW, Gaillard AWK. Sensory and motor aspects of the contingent negative variation. In: Gaillard AWK, Ritter W, editors. Tutorials in ERP research: endogenous components. Amsterdam: North-Holland Publishing Company; 1983. p. 269–310.

    Google Scholar 

  107. Brunia CHM. CNV and SPN: indices of anticipatory behavior. In: Jahanshahi M, Hallett M, editors. The Bereitschaftspotential: movement-related cortical potentials. New York: Kluwer Academic/Plenum; 2003. p. 207–27.

    Google Scholar 

  108. Ruchkin DS, Sutton S, Mahaffey D, Glaser J. Terminal CNV in the absence of motor response. Electroencephalogr Clin Neurophysiol. 1986;63(5):445–63.

    PubMed  CAS  Google Scholar 

  109. Gibbons H, Rammsayer TH. Current-source density analysis of slow brain potentials during time estimation. Psychophysiology. 2004;41(6):861–74.

    PubMed  Google Scholar 

  110. Rohrbaugh JW, Syndulko K, Lindsley DB. Brain wave components of the contingent negative variation in humans. Science. 1976;191(4231):1055–7.

    PubMed  CAS  Google Scholar 

  111. Macar F, Besson M. Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biol Psychol. 1985;21(4):293–307.

    PubMed  CAS  Google Scholar 

  112. Picton T, Woods D, Proulx G. Human auditory sustained potentials. I. The nature of the response. Electroencephalogr Clin Neurophysiol. 1978;45(2):186–97.

    PubMed  CAS  Google Scholar 

  113. Picton T, Woods D, Proulx G. Human auditory sustained potentials. II. Stimulus relationships. Electroencephalogr Clin Neurophysiol. 1978;45(2):198–210.

    PubMed  CAS  Google Scholar 

  114. Casini L, Macar F, Giard M-H. Relation between level of prefrontal activity and subject’s performance. J Psychophysiol. 1999;13(2):117–25.

    Google Scholar 

  115. McAdam DW. Slow potential changes recorded from human brain during learning of a temporal interval. Psychon Sci. 1966;6(9):435–6.

    Google Scholar 

  116. Ladanyi M, Dubrovsky B. CNV and time estimation. Int J Neurosci. 1985;26(3–4):253–7.

    PubMed  CAS  Google Scholar 

  117. Mitsudo T, Gagnon C, Takeichi H, Grondin S. An electroencephalographic investigation of the filled-duration illusion. Front Integr Neurosci. 2012;5:84. doi:10.3389/fnint.2011.00084. eCollection 2012.

    PubMed  PubMed Central  Google Scholar 

  118. Wiener M, Kliot D, Turkeltaub PE, Hamilton RH, Wolk DA, Coslett HB. Parietal influence on temporal encoding indexed by simultaneous transcranial magnetic stimulation and electroencephalography. J Neurosci. 2012;32(35):12258–67.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Macar F, Vidal F. Time processing reflected by EEG surface Laplacians. Exp Brain Res. 2002;145(3):403–6.

    PubMed  Google Scholar 

  120. Macar F, Vidal F, Casini L. The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res. 1999;125(3):271–80.

    PubMed  CAS  Google Scholar 

  121. Ferrandez AM, Pouthas V. Does cerebral activity change in middle-aged adults in a visual discrimination task? Neurobiol Aging. 2001;22(4):645–57.

    PubMed  CAS  Google Scholar 

  122. N’Diaye K, Ragot R, Garnero L, Pouthas V. What is common to brain activity evoked by the perception of visual and auditory filled durations? A study with MEG and EEG co-recordings. Cogn Brain Res. 2004;21(2):250–68.

    Google Scholar 

  123. Onoda K, Suzuki J, Nittono H, Sakata S, Hori T. LORETA analysis of CNV in time perception. Int Congr Ser. 2004;1270:291–4.

    Google Scholar 

  124. Bareš M, Rektor I, Kaňovský P, Streitová H. Cortical and subcortical distribution of middle and long latency auditory and visual evoked potentials in a cognitive (CNV) paradigm. Clin Neurophysiol. 2003;114(12):2447–60.

    PubMed  Google Scholar 

  125. Hamano T, Lüders HO, Ikeda A, Collura TF, Comair YG, Shibasaki H. The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalogr Clin Neurophysiol. 1997;104(3):257–68.

    PubMed  CAS  Google Scholar 

  126. Coull JT, Cheng R-K, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36(1):3–25.

    PubMed  PubMed Central  Google Scholar 

  127. Lewis PA, Miall RC. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.

    PubMed  CAS  Google Scholar 

  128. Penney TB, Vaitilingam L. Imaging time. In: Grondin S, editor. Psychology of time. Bingley: Emerald; 2008. p. 261–94.

    Google Scholar 

  129. Rubia K, Smith A. The neural correlates of cognitive time management: a review. Acta Neurobiol Exp. 2004;64(3):329–40.

    Google Scholar 

  130. Stevens MC, Kiehl KA, Pearlson G, Calhoun VD. Functional neural circuits for mental timekeeping. Hum Brain Mapp. 2007;28(5):394–408.

    PubMed  Google Scholar 

  131. Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. Neuroimage. 2010;49(2):1728–40.

    PubMed  Google Scholar 

  132. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65.

    PubMed  CAS  Google Scholar 

  133. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    PubMed  Google Scholar 

  134. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    PubMed  CAS  Google Scholar 

  135. Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18(2):145–52.

    PubMed  CAS  Google Scholar 

  136. Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 2007;20(4):873–922.

    Google Scholar 

  137. Ratcliff R, Philiastides MG, Sajda P. Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proc Natl Acad Sci. 2009;106(16):6539–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Burle B, Vidal F, Tandonnet C, Hasbroucq T. Physiological evidence for response inhibition in choice reaction time tasks. Brain Cogn. 2004;56(2):153–64.

    PubMed  Google Scholar 

  139. Meck WH, Church RM. A mode control model of counting and timing processes. J Exp Psychol Anim Behav Process. 1983;9(3):320–34.

    PubMed  CAS  Google Scholar 

  140. Nieder A, Dehaene S. Representation of number in the brain. Annu Rev Neurosci. 2009;32:185–208.

    PubMed  CAS  Google Scholar 

  141. Allman MJ, Pelphrey KA, Meck WH. Developmental neuroscience of time and number: implications for autism and other neurodevelopmental disabilities. Front Integr Neurosci. 2012;6:7. 10.3389/fnint.2012.00007. eCollection 2011.

    PubMed  PubMed Central  Google Scholar 

  142. Allan LG. The location and interpretation of the bisection point. Q J Exp Psychol B. 2002;55(1):43–60.

    PubMed  Google Scholar 

  143. Taatgen N, van Rijn H, Anderson J. An integrated theory of prospective time interval estimation: the role of cognition, attention and learning. Psychol Rev. 2007;114(3):577–98.

    PubMed  Google Scholar 

  144. Rockstroh B, Müller M, Wagner M, Cohen R, Elbert T. “Probing” the nature of the CNV. Electroencephalogr Clin Neurophysiol. 1993;87(4):235–41.

    PubMed  CAS  Google Scholar 

  145. König P, Engel AK, Singer W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 1996;19(4):130–7.

    PubMed  Google Scholar 

  146. Macar F, Coull J, Vidal F. The supplementary motor area in motor and perceptual time processing: fMRI studies. Cogn Process. 2006;7(2):89–94.

    PubMed  Google Scholar 

  147. Macar F, Vidal F. Timing processes: an outline of behavioural and neural indices not systematically considered in timing models. Can J Exp Psychol. 2009;63(3):227–39.

    PubMed  Google Scholar 

  148. Pouthas V, George N, Poline J-B, Pfeuty M, Vandemoorteele P-F, Hugueville L, et al. Neural network involved in time perception: an fMRI study comparing long and short interval estimation. Hum Brain Mapp. 2005;25(4):433–41.

    PubMed  Google Scholar 

  149. Simen P, Balci F, deSouza L, Cohen JD, Holmes P. A model of interval timing by neural integration. J Neurosci. 2011;31(25):9238–53.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Simen P, Balci F, deSouza L, Cohen JD, Holmes P. Interval timing by long-range temporal integration. Front Integr Neurosci. 2011;5:28. 10.3389/fnint.2011.00028. eCollection 2011.

    PubMed  PubMed Central  Google Scholar 

  151. Mochizuki Y, Takeuchi S, Masaki H, Takasawa N, Yamazaki K. An ERP study of the effect of time interval memory trace on temporal processing. Int Congr Ser. 2005;1278:373–6.

    Google Scholar 

  152. Bendixen A, Grimm S, Schröger E. Human auditory event-related potentials predict duration judgments. Neurosci Lett. 2005;383(3):284–8.

    PubMed  CAS  Google Scholar 

  153. Macar F, Vidal F. The CNV peak: an index of decision making and temporal memory. Psychophysiology. 2003;40(6):950–4.

    PubMed  Google Scholar 

  154. Elbert T, Ulrich R, Rockstroh B, Lutzenberger W. The processing of temporal intervals reflected by CNV-like brain potentials. Psychophysiology. 1991;28(6):648–55.

    PubMed  CAS  Google Scholar 

  155. Kononowicz TW, van Rijn H. Decoupling interval timing and climbing activity: a dissociation between CNV and N1P2 amplitudes. J Neurosci. 2014;34:2931–9.

    PubMed  CAS  Google Scholar 

  156. Durstewitz D. Neural representation of interval time. Neuroreport. 2004;15(5):745–9.

    PubMed  Google Scholar 

  157. Pfeuty M, Ragot R, Pouthas V. Relationship between CNV and timing of an upcoming event. Neurosci Lett. 2005;382(1–2):106–11.

    PubMed  CAS  Google Scholar 

  158. Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T. Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature. 2001;412(6846):546–9.

    PubMed  CAS  Google Scholar 

  159. Kilavik BE, Confais J, Riehle A. Signs of time in motor cortex during movement preparation and cue anticipation. In: Merchant H, de Lafuente V, editors. Neurobiology of interval timing. New York: Springer; 2014 (seventh chapter).

    Google Scholar 

  160. Ruchkin DS, McCalley MG, Glaser EM. Event related potentials and time estimation. Psychophysiology. 1977;14(5):451–5.

    PubMed  CAS  Google Scholar 

  161. Tarantino V, Ehlis A-C, Baehne C, Boreatti-Huemmer A, Jacob C, Bisiacchi P, et al. The time course of temporal discrimination: an ERP study. Clin Neurophysiol. 2010;121(1):43–52.

    PubMed  Google Scholar 

  162. Donchin E, Smith DB. The contingent negative variation and the late positive wave of the average evoked potential. Electroencephalogr Clin Neurophysiol. 1970;29(2):201–3.

    PubMed  CAS  Google Scholar 

  163. Martin T, Houck JM, Kicić D, Tesche CD. Interval timers and coupled oscillators both mediate the effect of temporally structured cueing. Neuroimage. 2008;40(4):1798–806.

    PubMed  Google Scholar 

  164. Pfeuty M, Ragot R, Pouthas V. When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Exp Brain Res. 2003;151(3):372–9.

    PubMed  Google Scholar 

  165. Shi Z, Church RM, Meck WH. Bayesian optimization of time perception. Trends Cogn Sci. 2013;17(11):556–64.

    PubMed  Google Scholar 

  166. Bangert AS, Reuter-Lorenz PA, Seidler RD. Dissecting the clock: understanding the mechanisms of timing across tasks and temporal intervals. Acta Psychol (Amst). 2011;136(1):20–34.

    Google Scholar 

  167. Merchant H, Zarco W, Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol. 2008;99(2):939–49.

    PubMed  Google Scholar 

  168. Wearden JH, Bray S. Scalar timing without reference memory? Episodic temporal generalization and bisection in humans. Q J Exp Psychol B. 2001;54(4):289–309.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor B. Penney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ng, K.K., Penney, T.B. (2014). Probing Interval Timing with Scalp-Recorded Electroencephalography (EEG). In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_11

Download citation

Publish with us

Policies and ethics