Skip to main content

From Duration and Distance Comparisons to Goal Encoding in Prefrontal Cortex

  • Chapter
  • First Online:
Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Timing is a very abstract representation that shares with other magnitudes, such as numerosity, the peculiarity of being independent from any particular sensory modality. Not only we can time stimuli in different modalities but we can also compare the durations of different visual, auditory and somatosensory stimuli. Furthermore, even though time is not directly associated with space, and we are inclined to consider space and time as two different perceptual dimensions of our existence, an increasing number of studies challenge this idea by showing that timing and spatial processing have some relationship that involves sharing computation resources and that time may have a spatial representation. A more general theory, called theory of magnitude (ATOM), considers both timing and spatial computations, together with other magnitudes, as originating from a general magnitude system [Walsh VA, Trends Cogn Sci 7(11):483–8, 2003]. The neural underpinnings of time and its relationship to the processing of spatial information have started to be investigated only recently, but the field is rapidly growing. It is addressing the representation of time in several cortical and subcortical brain areas. Information processing of time and space are not strictly specialized in neural and cognitive mechanisms and we believe that studying them only separately may restrict our understanding of these processes. In this chapter, we will firstly introduce the role of the prefrontal cortex (PF) in coding relative durations. We will point out that the comparison of durations makes use of intermediate computations based on the order of the events. Secondly, we will describe the comparison mechanisms that are implemented by PF to make perceptual decisions about durations in relation to those involved in making decisions about spatial locations and distances. We will distinguish the decision processes from the goal choices, and we will examine which computational resources are shared between different magnitudes and which are domain-specific. We will summarize our results within the context of a more general PF function in promoting the generation of goals from the current context, consisting of domain- and modality-specific coding of stimuli of different modalities or magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh VA. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci. 2003;7(11):483–8.

    PubMed  Google Scholar 

  2. Lejeune H, Maquet P, Bonnet M, Casini L, Ferrara A, Macar F, et al. The basic pattern of activation in motor and sensory temporal tasks: positron emission tomography data. Neurosci Lett. 1997;235(1–2):21–4.

    PubMed  CAS  Google Scholar 

  3. Maquet P, Lejeune H, Pouthas V, Bonnet M, Casini L, Macar F, et al. Brain activation induced by estimation of duration: a PET study. Neuroimage. 1996;3(2):119–26.

    PubMed  CAS  Google Scholar 

  4. Nenadic I, Gaser C, Volz HP, Rammsayer T, Hager F, Sauer H. Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res. 2003;148(2):238–46.

    PubMed  Google Scholar 

  5. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.

    PubMed  CAS  Google Scholar 

  6. Harrington DL, Haaland KY, Knight RT. Cortical networks underlying mechanisms of time perception. J Neurosci. 1998;18(3):1085–95.

    PubMed  CAS  Google Scholar 

  7. Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res. 1998;7(1):15–39.

    PubMed  CAS  Google Scholar 

  8. Onoe H, Komori M, Onoe K, Takechi H, Tsukada H, Watanabe Y. Cortical networks recruited for time perception: a monkey positron emission tomography (PET) study. Neuroimage. 2001;13(1):37–45.

    PubMed  CAS  Google Scholar 

  9. Rao SM, Mayer AR, Harrington DL. The evolution of brain activation during temporal processing. Nat Neurosci. 2001;4(3):317–23.

    PubMed  CAS  Google Scholar 

  10. Danckert J, Ferber S, Pun C, Broderick C, Striemer C, Rock S, et al. Neglected time: impaired temporal perception of multisecond intervals in unilateral neglect. J Cogn Neurosci. 2007;19(10):1706–20.

    PubMed  Google Scholar 

  11. Kagerer FA, Wittmann M, Szelag E, Steinbüchel N. Cortical involvement in temporal reproduction: evidence for differential roles of the hemispheres. Neuropsychologia. 2002;40(3):357–66.

    PubMed  Google Scholar 

  12. Koch G, Oliveri M, Carlesimo GA, Caltagirone C. Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology. 2002;59(10):1658–9.

    PubMed  Google Scholar 

  13. Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M. The right dorsolaterale prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res. 2004;158(3):366–72.

    PubMed  Google Scholar 

  14. Koch G, Oliveri M, Torriero S, Caltagirone C. Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology. 2003;60(11):1844–6.

    PubMed  Google Scholar 

  15. Stuss DT, Alexander MP, Shallice T, Picton TW, Binns MA, Macdonald R, et al. Multiple frontal systems controlling response speed. Neuropsychologia. 2005;43(3):396–417.

    PubMed  Google Scholar 

  16. Trivino M, Correa A, Arnedo M, Lupianez J. Temporal orienting deficit after prefrontal damage. Brain. 2010;133(4):1173–85.

    PubMed  Google Scholar 

  17. Vallesi A, Mussoni A, Mondani M, Budai R, Skrap M, Shallice T. The neural basis of temporal preparation: insights from brain tumor patients. Neuropsychologia. 2007;45(12):2755–63.

    PubMed  Google Scholar 

  18. Vallesi A, Shallice T, Walsh V. Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cereb Cortex. 2007;17(2):466–74.

    PubMed  Google Scholar 

  19. Niki H, Watanabe M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 1979;171(2):213–24.

    PubMed  CAS  Google Scholar 

  20. Janssen P, Shadlen MN. A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci. 2005;8(2):234–41.

    PubMed  CAS  Google Scholar 

  21. Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2003;38(2):317–27.

    PubMed  CAS  Google Scholar 

  22. Maimon G, Assad JA. A cognitive signal for the proactive timing of action in macaque LIP. Nat Neurosci. 2006;9(7):48–55.

    Google Scholar 

  23. Schneider B, Ghose GM. Temporal production signals in parietal cortex. PLoS Biol. 2012;10(10):e1001413.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Genovesio A, Tsujimoto S, Wise SP. Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol. 2006;95(5):3281–5.

    PubMed  PubMed Central  Google Scholar 

  25. Lebedev MA, O’Doherty JE, Nicolelis MA. Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol. 2008;99(1):166–86.

    PubMed  Google Scholar 

  26. Ohmae S, Lu X, Takahashi T, Uchida Y, Kitazawa S. Neuronal activity related to anticipated and elapsed time in macaque supplementary eye field. Exp Brain Res. 2008;184(4):593–8.

    PubMed  Google Scholar 

  27. Oshio K, Chiba A, Inase M. Delay period activity of monkey prefrontal neurones during duration-discrimination task. Eur J Neurosci. 2006;23(10):2779–90.

    PubMed  Google Scholar 

  28. Oshio K, Chiba A, Inase M. Temporal filtering by prefrontal neurons in duration discrimination. Eur J Neurosci. 2008;28(11):2333–43.

    PubMed  Google Scholar 

  29. Sakurai Y, Takahashi S, Inoue M. Stimulus duration in working memory is represented by neuronal activity in the monkey prefrontal cortex. Eur J Neurosci. 2004;20(4):1069–80.

    PubMed  Google Scholar 

  30. Tsujimoto S, Sawaguchi T. Neuronal activity representing temporal prediction of reward in the primate prefrontal cortex. J Neurophysiol. 2005;93(6):3687–92.

    PubMed  Google Scholar 

  31. Brody CD, Hernandez A, Zainos A, Romo R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex. 2003;13(11):1196–207.

    PubMed  Google Scholar 

  32. Renoult L, Roux S, Riehle A. Time is a rubberband: neuronal activity in monkey motor cortex in relation to time estimation. Eur J Neurosci. 2006;23(11):3098–108.

    PubMed  Google Scholar 

  33. Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci. 2009;12(4):502–7.

    PubMed  CAS  Google Scholar 

  34. Lucchetti C, Bon L. Time-modulated neuronal activity in the premotor cortex of macaque monkeys. Exp Brain Res. 2001;141(2):254–60.

    PubMed  CAS  Google Scholar 

  35. Merchant H, Zarco W, Pérez O, Prado L, Bartolo R. Measuring time with different neural chronometers during a synchronization-continuation task. Proc Natl Acad Sci U S A. 2011;108(49):19784–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96.

    PubMed  CAS  Google Scholar 

  37. Kilavik BE, Confais J, Ponce-Alvarez A, Diesmann M, Riehle A. Evoked potentials in motor cortical local field potentials reflect task timing and behavioral performance. J Neurophysiol. 2010;104(5):2338–51.

    PubMed  Google Scholar 

  38. Confais J, Kilavik BE, Ponce-Alvarez A, Riehle A. On the anticipatory pre-cue activity in motor cortex. J Neurosci. 2012;32(15):15359–68.

    PubMed  CAS  Google Scholar 

  39. Chiba A, Oshio K, Inase M. Striatal neurons encoded temporal information in duration discrimination task. Exp Brain Res. 2008;186(4):671–6.

    PubMed  Google Scholar 

  40. Matell MS, Meck WH, Nicolelis MA. Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci. 2003;117(4):760–73.

    PubMed  Google Scholar 

  41. Portugal GS, Wilson AG, Matell MS. Behavioral sensitivity of temporally modulated striatal neurons. Front Integr Neurosci. 2011;5:30.

    PubMed  PubMed Central  Google Scholar 

  42. Genovesio A, Tsujimoto S, Wise SP. Feature- and order-based timing representations in the frontal cortex. Neuron. 2009;63(2):254–66.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Genovesio A, Tsujimoto S, Wise SP. Encoding goals but not abstract magnitude in the primate prefrontal cortex. Neuron. 2012;74(4):656–62.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Roesch MR, Olson CR. Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex. J Neurophysiol. 2005;94(2):1469–97.

    PubMed  Google Scholar 

  45. Tsujimoto S, Sawaguchi T. Neuronal representation of response-outcome in the primate prefrontal cortex. Cereb Cortex. 2004;14(1):47–55.

    PubMed  Google Scholar 

  46. Tsujimoto S, Genovesio A, Wise SP. Comparison of strategy signals in the dorsolateral and orbital prefrontal cortex. J Neurosci. 2011;31(12):4583–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Genovesio A, Brasted PJ, Mitz AR, Wise SP. Prefrontal cortex activity related to abstract response strategies. Neuron. 2005;47(2):307–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Genovesio A, Tsujimoto S, Wise SP. Encoding problem-solving strategies in prefrontal cortex: activity during strategic errors. Eur J Neurosci. 2008;27(4):984–90.

    PubMed  PubMed Central  Google Scholar 

  49. Hoshi E, Tanji J. Area-selective neuronal activity in the dorsolateral prefrontal cortex for information retrieval and action planning. J Neurophysiol. 2004;91(6):2707–22.

    PubMed  Google Scholar 

  50. Tsujimoto S, Genovesio A, Wise SP. Monkey orbitofrontal cortex encodes response choices near feedback time. J Neurosci. 2009;29(8):2569–74.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Yumoto N, Lu X, Henry TR, Miyachi S, Nambu A, Fukai T, et al. A neural correlate of the processing of multi-second time intervals in primate prefrontal cortex. PLoS One. 2011;6(4):e19168.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Jin DZ, Fujui N, Graybiel AM. Neural representation of time in cortico-basal ganglia circuits. Proc Natl Acad Sci U S A. 2009;106(45):19156–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Ninokura Y, Mushiake H, Tanji J. Integration of temporal order and object information in the monkey lateral prefrontal cortex. J Neurophysiol. 2004;91(1):555–60.

    PubMed  Google Scholar 

  54. Funahashi S, Inoue M, Kubota K. Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behav Brain Res. 1997;84(1–2):203–23.

    PubMed  CAS  Google Scholar 

  55. Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18(2):145–52.

    PubMed  CAS  Google Scholar 

  56. Hanakawa T, Honda M, Sawamoto N, Okad T, Yonekura Y, Fukuyama H, et al. The role of rostral Brodmann area 6 in mental operation tasks: an integrative neuroimaging approach. Cereb Cortex. 2002;12(11):1157–70.

    PubMed  Google Scholar 

  57. Lebedev MA, Wise SP. Tuning for the orientation of spatial attention in dorsal premotor cortex. Eur J Neurosci. 2001;13(5):1002–8.

    PubMed  CAS  Google Scholar 

  58. Casasanto D, Boroditsky L. Time in the mind: using space to think about time. Cognition. 2008;106(2):579–93.

    PubMed  Google Scholar 

  59. Mitchell CT, Davis R. The perception of time in scale model environments. Perception. 1987;16(1):5–16.

    PubMed  CAS  Google Scholar 

  60. Basso G, Nichelli P, Frassinetti F, Di Pellegrino G. Time perception in a neglected space. Neuroreport. 1996;7(13):2111–4.

    PubMed  CAS  Google Scholar 

  61. Merritt DJ, Casasanto D, Brannon EM. Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition. 2010;117(2):191–202.

    PubMed  PubMed Central  Google Scholar 

  62. Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cogn Neuropsychol. 2003;20(3):487–506.

    PubMed  Google Scholar 

  63. Hubbard EM, Piazza M, Pinel P, Dehaene S. Interactions between number and space in parietal cortex. Nat Rev Neurosci. 2005;6(6):435–48.

    PubMed  CAS  Google Scholar 

  64. Fischer MH, Castel AD, Dodd MD, Pratt J. Perceiving numbers causes spatial shifts of attention. Nat Neurosci. 2003;6(6):555–6.

    PubMed  CAS  Google Scholar 

  65. Perrone G, de Hevia MD, Bricolo E, Girelli L. Numbers can move our hands: a spatial representation effect in digits handwriting. Exp Brain Res. 2010;205(4):479–87.

    PubMed  Google Scholar 

  66. Nicholls ME, McIlroy AM. Spatial cues affect mental number line bisections. Exp Psychol. 2010;57(4):315–9.

    PubMed  Google Scholar 

  67. Lavidor M, Brinksman V, Göbel SM. Hemispheric asymmetry and the mental number line: comparison of double-digit numbers. Neuropsychologia. 2004;42(14):1927–33.

    PubMed  Google Scholar 

  68. Brunamonti E, Falcone R, Genovesio A, Costa S, Ferraina S. Gaze orientation interferes with mental numerical representation. Cogn Process. 2012;13(4):375–9.

    PubMed  Google Scholar 

  69. Brunamonti E, Genovesio A, Carbè K, Ferraina S. Gaze modulates non-propositional reasoning: further evidence for spatial representation of reasoning premises. Neuroscience. 2011;173:110–5.

    PubMed  CAS  Google Scholar 

  70. Zorzi M, Priftis K, Umiltà C. Brain damage: neglect disrupts the mental number line. Nature. 2002;417(6885):138–9.

    PubMed  CAS  Google Scholar 

  71. Doricchi F, Guariglia P, Gasparini M, Tomaiuolo F. Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nat Neurosci. 2005;8(12):1663–5.

    PubMed  CAS  Google Scholar 

  72. Gallistel CR, Gelman II. Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci. 2000;4(2):59–65.

    PubMed  Google Scholar 

  73. Srinivasan M, Carey S. The long and the short of it: on the nature and origin of functional overlap between representations of space and time. Cognition. 2010;116(2):217–41.

    PubMed  PubMed Central  Google Scholar 

  74. Morrone MC, Ross J, Burr D. Saccadic eye movements cause compression of time as well as space. Nat Neurosci. 2005;8(7):950–4.

    PubMed  CAS  Google Scholar 

  75. Burr DC, Ross J, Binda P, Morrone MC. Saccades compress space, time and number. Trends Cogn Sci. 2010;14(12):528–33.

    PubMed  Google Scholar 

  76. Casasanto D, Fotakopoulou O, Boroditsky L. Space and time in the child’s mind: evidence for a cross-dimensional asymmetry. Cogn Sci. 2010;34(3):387–405.

    PubMed  Google Scholar 

  77. Mendez JC, Prado L, Mendoza G, Merchant H. Temporal and spatial categorization in human and non-human primates. Front Integr Neurosci. 2011;5:50.

    PubMed  PubMed Central  Google Scholar 

  78. Javadi AH, Aichelburg C. When time and numerosity interfere: the longer the more, and the more the longer. PLoS One. 2012;7(7):e41496.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Xuan B, Zhang D, He S, Chen X. Larger stimuli are judged to last longer. J Vis. 2007;7(10):2.1-5.

    Google Scholar 

  80. Meck WH, Church RM. A mode control model of counting and timing processes. J Exp Psychol Anim Behav Process. 1983;9(3):320–34.

    PubMed  CAS  Google Scholar 

  81. Di Bono M, Casarotti K, Priftis L, Gava C, Umiltà M, Zorzi M. Priming the mental time line. J Exp Psychol Hum Percept Perform. 2012;38(4):838–42.

    PubMed  Google Scholar 

  82. Oliveri M, Koch G, Salerno S, Torriero S, Gerfo EL, Caltagirone C. Representation of time intervals in the right posterior parietal cortex: implications for a mental time line. Neuroimage. 2009;46(4):1173–9.

    PubMed  Google Scholar 

  83. Vicario CM, Pecoraro P, Turriziani P, Koch G, Caltagirone C, Oliveri M. Relativistic compression and expansion of experiential time in the left and right space. PLoS One. 2008;3(3):e1716.

    PubMed  PubMed Central  Google Scholar 

  84. Vicari CM, Caltagirone C, Oliveri M. Optokinetic stimulation affects temporal estimation in healthy humans. Brain Cogn. 2007;64(1):68–73.

    Google Scholar 

  85. Cappelletti M, Freeman ED, Cipolotti L. Numbers and time doubly dissociate. Neuropsychologia. 2011;49(11):3078–92.

    PubMed  Google Scholar 

  86. Cappelletti M, Freeman ED, Butterworth B. Time processing in dyscalculia. Front Psychol. 2011;2:364.

    PubMed  PubMed Central  Google Scholar 

  87. Nieder A, Freedman DJ, Miller EK. Representation of the quantity of visual items in the primate prefrontal cortex. Science. 2002;297(5587):1708–11.

    PubMed  CAS  Google Scholar 

  88. Genovesio A, Brasted PJ, Wise SP. Representation of future and previous spatial goals by separate neural populations in prefrontal cortex. J Neurosci. 2006;26(27):7305–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Lebedev MA, Messinger A, Kralik JD, Wise SP. Representation of attended versus remembered locations in prefrontal cortex. PLoS Biol. 2004;2(11):1919–35.

    CAS  Google Scholar 

  90. Baars BJ, Ramsøy TZ, Laureys S. Brain, conscious experience and the observing self. Trends Neurosci. 2003;26(12):671–5.

    PubMed  CAS  Google Scholar 

  91. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. 2010;14(4):172–9.

    PubMed  Google Scholar 

  92. Wilson CR, Gaffan D, Browning PG, Baxter MG. Functional localization within the prefrontal cortex: missing the forest for the trees? Trends Neurosci. 2010;33(12):533–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Tsujimoto S, Genovesio A, Wise SP. Neuronal activity during a cued strategy task: comparison of dorsolateral, orbital, and polar prefrontal cortex. J Neurosci. 2012;32(32):11017–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Rainer G, Rao SC, Miller EK. Prospective coding for objects in primate prefrontal cortex. J Neurosci. 1999;19(13):5493–505.

    PubMed  CAS  Google Scholar 

  95. Tsujimoto S, Genovesio A, Wise SP. Transient neuronal correlations underlying goal selection and maintenance in prefrontal cortex. Cereb Cortex. 2008;18(12):2748–61.

    PubMed  PubMed Central  Google Scholar 

  96. Kusunoki M, Sigala N, Gaffan D, Duncan J. Detection of fixed and variable targets in the monkey prefrontal cortex. Cereb Cortex. 2009;19(11):2522–34.

    PubMed  PubMed Central  Google Scholar 

  97. Rowe JB, Stephan KE, Friston K, Frackowiak RS, Passingham RE. The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour. Cereb Cortex. 2005;15(1):85–95.

    PubMed  Google Scholar 

  98. Jahanshahi M, Dirnberger G, Fuller R, Frith CD. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage. 2000;12(6):713–25.

    PubMed  CAS  Google Scholar 

  99. Fias W, Lammertyn J, Reynvoet B, Dupont P, Orban GA. Parietal representation of symbolic and nonsymbolic magnitude. J Cogn Neurosci. 2003;15(1):47–56.

    PubMed  Google Scholar 

  100. Pinel P, Piazza M, Le Bihan D, Dehaene S. Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron. 2004;41(6):983–93.

    PubMed  CAS  Google Scholar 

  101. Magnani B, Oliveri M, Mancuso G, Galante E, Frassinetti F. Time and spatial attention: effects of prism adaptation on temporal deficits in brain damaged patients. Neuropsychologia. 2011;49(5):1016–23.

    PubMed  Google Scholar 

  102. Tudusciuc O, Nieder A. Contributions of primate prefrontal and posterior parietal cortices to length and numerosity representation. J Neurophysiol. 2009;101(6):2984–94.

    PubMed  Google Scholar 

  103. Genovesio A, Tsujimoto S, Wise SP. Prefrontal cortex activity during the discrimination of relative distance. J Neurosci. 2011;31(11):3968–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Saito N, Mushiake H, Sakamoto K, Itoyama Y, Tanji J. Representation of immediate and final behavioral goals in the monkey prefrontal cortex during an instructed delay period. Cereb Cortex. 2005;15(10):1535–46.

    PubMed  Google Scholar 

  105. Glover S, Rosenbaum DA, Graham J, Dixon P. Grasping the meaning of words. Exp Brain Res. 2004;154(1):103–8.

    PubMed  Google Scholar 

  106. Andres M, Davare M, Pesenti E, Olivier X, Seron X. Number magnitude and grip aperture interaction. Neuroreport. 2004;15(18):2773–7.

    PubMed  Google Scholar 

  107. Eiselt AK, Nieder A. Representation of abstract quantitative rules applied to spatial and numerical magnitudes in primate prefrontal cortex. J Neurosci. 2013;33(17):7526–34.

    PubMed  CAS  Google Scholar 

  108. Battelli L, Walsh V, Pascual-Leone A, Cavanagh P. The ‘when’ parietal pathway explored by lesion studies. Curr Opin Neurobiol. 2008;18(2):120–6.

    PubMed  CAS  Google Scholar 

  109. Bueti D, Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc Lond B Biol Sci. 2009;364(1525):1831–40.

    PubMed  PubMed Central  Google Scholar 

  110. Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35.

    PubMed  CAS  Google Scholar 

  111. Assmus A, Marshall JC, Ritzl A, Noth J, Zilles K, Fink GR. Left inferior parietal cortex integrates time and space during collision judgments. Neuroimage. 2003;20(1):S82–8.

    PubMed  Google Scholar 

  112. Gibbon J, Church RM, Meck WH. Scalar timing in memory. Ann N Y Acad Sci. 1984;423:52–77.

    PubMed  CAS  Google Scholar 

  113. Wise SP, Passingham RE. The neurobiology of the prefrontal cortex: anatomy, evolution, and the origin of insight (Oxford psychology series). Oxford: Oxford University Press; 2012.

    Google Scholar 

  114. Genovesio A, Wise SP, Passingham RE. Prefrontal-parietal function: from foraging to foresight. Trends Cogn Sci. 2014;18(2):72–81.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Genovesio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Genovesio, A., Tsujimoto, S. (2014). From Duration and Distance Comparisons to Goal Encoding in Prefrontal Cortex. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_10

Download citation

Publish with us

Policies and ethics