Skip to main content

From Where? Synaptic Tagging Allows the Nucleus Not to Care

  • Chapter
  • First Online:
  • 873 Accesses

Abstract

Most of us now accept that the formation of long-lasting memories requires de novo transcription of plasticity-related proteins. It is also thought that localized translation of these transcripts, at or near recently activated synaptic sites, structurally stabilizes synaptic connections, thereby consolidating the memory. However, the molecular mechanisms underlying where, when, and how these newly synthesized transcripts participate in memory storage has remained a formidable question in neuroscience. Here we discuss the hypothesis that the nucleus acts as a calculator of incoming signals from activated synapses, either in the form of an electrical signal, through calcium, or as part of a transported signal. As long as a synaptic tag is created, the form of how a signal reaches the nucleus is freed from the requirement of leaving a “trail of breadcrumbs.” The nucleus can instead detect information on how the neuron fits into the network (counting number of modified or active synapses, or whether inhibitory neurons have a say, for example). We propose that it is the output of the nucleus, or nucleus-to-synapse signaling, along with the type of synaptic tag formed, that determines whether the right transcript will be translated at the right synapse at the right time. We further discuss the idea of inverse tagging and how local protein synthesis might play a role in distinguishing inactive versus active synapses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams JP, Dudek SM (2005) Late-phase long-term potentiation: getting to the nucleus. Nat Rev Neurosci 6:737–743

    Article  PubMed  CAS  Google Scholar 

  • Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    Article  PubMed  CAS  Google Scholar 

  • Behnisch T, YuanXiang P, Bethge P, Parvez S, Chen Y, Yu J, Karpova A, Frey JU, Mikhaylova M, Kreutz MR (2011) Nuclear translocation of jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression. PLoS One 6:e17276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bukalo O, Campanac E, Hoffman DA, Fields RD (2013) Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc Natl Acad Sci U S A 110:5175–5180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ch’ng TH, Uzgil B, Lin P, Avliyakulov NK, O’Dell TJ, Martin KC (2012) Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 150:201–221

    Google Scholar 

  • Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52:445–459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96:518–559

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Vanhoutte P, Pagès C, Caboche J, Laroche S (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20:4563–4572

    PubMed  CAS  Google Scholar 

  • De Rubeis S, Pasciuto E, Li KW, Fernández E, Di Marino D, Buzzi A, Ostroff LE, Klann E, Zwartkruis FJT, Komiyama NH et al (2013) CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79:1169–1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ (2008) A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14:926–939

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 30:3540–3552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dudek SM, Fields RD (2001) Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: roles of action potentials, frequency, and mode of calcium entry. J Neurosci 21(2):RC122

    PubMed  CAS  Google Scholar 

  • Dudek SM, Fields RD (2002) Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc Natl Acad Sci 99:3962–3967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dynes JL, Steward O (2007) Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J Comp Neurol 500:433–447

    Article  PubMed  CAS  Google Scholar 

  • Farris S, Lewandowski G, Cox CD, Steward O (2014) Selective localization of arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation. J Neurosci 34:4481–4493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fonseca R, Nägerl UV, Morris RGM, Bonhoeffer T (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44:1011–1020

    PubMed  CAS  Google Scholar 

  • Frey S, Frey JU (2008) Chapter 7 “synaptic tagging” and “cross-tagging” and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. In: Lacaille JC, Castellucci VF, Belleville S, Sossin WS (eds) Progress in brain research. Elsevier, New York, pp 117–143

    Google Scholar 

  • Frey U, Morris RGM (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Google Scholar 

  • Fritzsche R, Karra D, Bennett KL, Ang F, Heraud-Farlow JE, Tolino M, Doyle M, Bauer KE, Thomas S, Planyavsky M et al (2013) Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons. Cell Rep 5:1749–1762

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Inoue M, Okuno H, Sano Y, Takemoto-Kimura S, Kitamura K, Kano M, Bito H (2013) Nonlinear decoding and asymmetric representation of neuronal input information by CaMKIIα and calcineurin. Cell Rep 3:978–987

    Article  PubMed  CAS  Google Scholar 

  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory—a molecular framework. Nature 322:419–422

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2:1120–1124

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent Arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001

    PubMed  CAS  Google Scholar 

  • Karpova A, Mikhaylova M, Bera S, Bär J, Reddy PP, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J et al (2013) Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell 152:1119–1133

    Article  PubMed  CAS  Google Scholar 

  • Kauderer BS, Kandel ER (2000) Capture of a protein synthesis-dependent component of long-term depression. Proc Natl Acad Sci U S A 97:13342–13347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Köhrmann M, Luo M, Kaether C, DesGroseillers L, Dotti CG, Kiebler MA (1999) Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol Biol Cell 10:2945–2953

    Article  PubMed  PubMed Central  Google Scholar 

  • Krichevsky AM, Kosik KS (2001) Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32:683–696

    Article  PubMed  CAS  Google Scholar 

  • Lai K-O, Zhao Y, Ch’ng TH, Martin KC (2008) Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons. Proc Natl Acad Sci 105:17175–17180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, Kuhl D (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A 92:5734–5738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445

    Article  PubMed  CAS  Google Scholar 

  • Martin KC, Kosik KS (2002) Synaptic tagging—who’s it? Nat Rev Neurosci 3:813–820

    Article  PubMed  CAS  Google Scholar 

  • Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, Bramham CR (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27:10445–10455

    Article  PubMed  CAS  Google Scholar 

  • Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • Nonaka M, Fujii H, Kim R, Kawashima T, Okuno H, Bito H (2014) Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. Philos Trans R Soc Lond B Biol Sci 369(1633):20130150

    Article  PubMed  Google Scholar 

  • Okuno H, Akashi K, Ishii Y, Yagishita-Kyo N, Suzuki K, Nonaka M, Kawashima T, Fujii H, Takemoto-Kimura S, Abe M et al (2012) Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149:886–898

    Article  PubMed  CAS  Google Scholar 

  • Patterson SL, Pittenger C, Morozov A, Martin KC, Scanlin H, Drake C, Kandel ER (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32:123–140

    Article  PubMed  CAS  Google Scholar 

  • Poon MM, Choi S-H, Jamieson CAM, Geschwind DH, Martin KC (2006) Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J Neurosci 26:13390–13399

    Article  PubMed  CAS  Google Scholar 

  • Rial Verde EM, Lee-Osbourne J, Worley P, Malinow R, Cline H (2006) Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52:461–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha RN, Dudek SM (2008) Action potentials: to the nucleus and beyond. Exp Biol Med 233:385–393

    Article  CAS  Google Scholar 

  • Saha RN, Dudek SM (2013) Splitting hares and tortoises: a classification of neuronal immediate early gene transcription based on poised RNA polymerase II. Neuroscience 247:175–181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saha RN, Wissink EM, Bailey ER, Zhao M, Fargo DC, Hwang J-Y, Daigle KR, Fenn JD, Adelman K, Dudek SM (2011) Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nat Neurosci 14:848–856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sajikumar S, Frey JU (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82:12–25

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52:475–484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751

    Article  PubMed  CAS  Google Scholar 

  • Tübing F, Vendra G, Mikl M, Macchi P, Thomas S, Kiebler MA (2010) Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J Neurosci 30:4160–4170

    Article  PubMed  Google Scholar 

  • Wiegert JS, Bengtson CP, Bading H (2007) Diffusion and not active transport underlies and limits ERK1/2 synapse-to-nucleus signaling in hippocampal neurons. J Biol Chem 282:29621–29633

    Article  PubMed  CAS  Google Scholar 

  • Young JZ, Nguyen PV (2005) Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J Neurosci 25:7221–7231

    Article  PubMed  CAS  Google Scholar 

  • Zhai S, Ark ED, Parra-Bueno P, Yasuda R (2013) Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Adams JP, Dudek SM (2005) Pattern-dependent role of NMDA receptors in action potential generation: consequences on extracellular signal-regulated kinase activation. J Neurosci 25:7032–7039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong J, Zhang T, Bloch L (2006) Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wu H, Li S, Chen Q, Cheng XW, Zheng J, Takemori H, Xiong ZQ (2006) Requirement of TORC1 for late-phase long-term potentiation in the hippocampus. PLoS One 1:e16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was funded by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena M. Dudek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farris, S., Dudek, S.M. (2015). From Where? Synaptic Tagging Allows the Nucleus Not to Care. In: Sajikumar, S. (eds) Synaptic Tagging and Capture. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1761-7_9

Download citation

Publish with us

Policies and ethics